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ABSTRACT 
 
A single dense depth estimation using stereo or defocus cannot 
produce a reliable result due to the ambiguity problem. In this 
paper, we propose a novel anisotropic disparity estimation 
embedding a stereo confocal constraint for real-aperture stereo 
camera systems. If the focal length of a real-aperture stereo camera 
is just changed, the depth range is localized in a focused object 
which can be discriminated from defocused blurring. The focal 
depth plane is estimated by the displacement of tensors which are 
derived from generalized 2-D Gaussian, since the point spread 
functions (PSF) in defocused blurring can be approximated by a 
shift-invariant Gaussian function. We localize the isotropic 
propagation in blurring over invariance by a sparse Laplacian 
kernel in Poisson solution. The matching of real-aperture stereo 
images is performed by observing the focal consistency. However, 
the isotropic propagation cannot exactly hold a non-parallel 
surface to the lens plane i.e. unequifocal surface. An anisotropic 
regularization term is employed to suppress the isotropic 
propagation near the non-parallel surface boundary. Our method 
achieves an accurate dense disparity map by sampling the 
disparities in focal points from multiple defocus stereo images. 
The pels in focal points are utilized to recover the pinhole image 
(i.e. an ideally focused image for all different depths). 
 
Index Terms— stereo vision, image matching, optical transfer 
functions, diffusion processes.
 

1. INTRODUCTION 
 
Recent years have seen a lot of advances in the problem to 
reconstruct a complex 3-D scene from a series of multiple images. 
Most algorithms choose a human visual feature perceiving depth 
e.g. disparity and DoF (depth of field). By establishing the 
correspondences in a series, objects are distinguished by depth 
information related to the respective position. However, the ill-
posed correspondence problem cannot be perfectly solved by only 
one series. 

For example, disparity estimation is difficult to solve the 
ambiguity problem in local image structures due to image noise, 
unbalanced brightness, similar texture and occlusion, etc. To 
achieve more reliable estimation performance, local appearance 
matching [1] with boundary constraints between features, edges 
and disparity discontinuity etc. is employed. The constraints are 
utilized as a landmark of the coherency of objects. However, the 
performance is not satisfactory due to the localization problem. 
The latest researches incorporate a regularization term which 

attempts to filter off the delocalized error. Isotropic regularization 
uses a convolution based on variance. However, the scale of linear 
transformation in the convolution leads to undesired smoothing of 
important discontinuity. Anisotropic diffusion methods prevent the 
important structure from smoothing by modifying the transforms at 
discontinuity edges by weighting intensity gradients. Although this 
method results a dense disparity map with local structure 
preservation, semantic information is needed to combine divided 
regions of an object. 

Practical camera systems use a real aperture camera model 
which yields focus-related blurring (i.e. DoF). Depth from focus 
(or defocus) methods [2, 3] exploits the variation of the blurring in 
a number of images captured at different focus settings. If the 
camera is focused on an object at a depth, the other objects in a 
different depth are blurred. The relative blurring between the 
defocused images can be utilized as the stereo cue. In this paper, 
we propose a novel anisotropic disparity estimation embedding the 
defocus cue (i.e. confocal constraint) in a real-aperture 3-D camera 
system shown in Figure 1. 
 

2. RELATED WORKS 
 
Blurring of defocus by optic can be approximated by linear 
convolution between the focused image and the blurring function 
i.e. known as “point spread function” (PSF). Blurring between 
near- and far-focus images can be estimated by the second central 
moments of the blur circle because the PSF is a circularly 
symmetrical function. Subbarao and Surya [2] proposed the S-
transform of Laplacian as a focus operator. A defocus function acts 
as a low-pass filtering e.g. 2-D Gaussian and a focus operator 
performs the inverse. The difference of the standard deviations i.e. 
the spread parameter between near- and far-focused images can be 
mapped to the respective depths. However, the operator is suitable 
only for equifocal surfaces since the operator is isotropic. In [3], 
Favaro employs an anisotropic diffusion to solve the problem. If a 
scene is highly textured, the method is sufficient to estimate a 
reliable depth. However, regions with weak textures are still 
ambiguous to distinguish from blurred regions. 

For the solution, fusions with stereo [4-6] were proposed. In [4], 
a probabilistic model of focus and stereo merges the depths by 
weighted averaging the local variances that are estimated by 
Cramer-Rao inequality in the unbiased estimator. However, this 
method cannot guarantee the accuracy of the estimated variances. 
A Markov random field method [5] integrates the depths by 
smoothness priors in an energy functional which is minimized by 
simulated annealing. Another method [6] employs graph-cut for a 
focus measure. However, these methods do not consider the local 
features to avoid the convergence into local minima. In our 
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previous works [7], the multiple-resolutions of the scale-space 
provide the best trade-off between the detection and the 
localization performance of features. The range of disparity 
matching is propagated by isotropic gradient weights following the 
streamline of the scale-space and localized in the spatially 
invariant sparse Laplacian kernel by Poisson solver. The dense 
disparity estimation is locally performed by a scheme of local 
appearance matching. Anisotropic diffusion globally regularizes 
the disparity map by suppressing the length of the isotropic 
propagations to the orthogonal direction of edges. The method 
gave us good dense disparity maps preserving the important local 
structures. However, it cannot combine divided regions in the main 
object.  

This paper tries to combine the regional structure in a focal 
object in defocused images. A focus image offers semantic 
information such as the sharp boundary of a focusing object which 
is easily distinguished by the defocus blur. The defocus cue serves 
a constraint to localize the disparity estimation in a confocal 
boundary. However, the variances in PSF are isotropic and the 
propagation near the edges of unequifocal surfaces may not be 
accurate. We regularize the propagation in the dense disparity map 
by anisotropic filtering. 

 
2. CONFOCAL DISPARITY ESTIMATION 

 
2.1. Confocal localization for disparity estimation 
 
If a focused point belongs to an object surface, the diameter  of 
blurring in a series of defocus images is given by a lens law [5]. 
 

 1/ 1/ 1/n n n n n nr V F Z V                     (1) 

 
n is the number of focus images, r is the lens aperture, F is the 
focal length, V is the sensor plane-to-lens distance and Z is the 
distance between the object surface and the lens i.e. the object 
distance. We use a parameter  from pre-calibration to fit the focal 
depth plane into the depth from disparity. 
Since conventional stereo systems use a pin-hole camera model, 
we assume that an ideal focus (i.e. Fn=f) enables the infinite depth 
of field. The ideal focuses Ffar and Fnear on the surfaces which are 
located at respective depths Za and Zb accompany defocus blurring 
as Figure 1a illustrates. The confocal disparity can be defined by 
an epipolar constraint. 
 

/d bf z                                          (2) 
 
z is associated depth to the disparity d and b is the baseline. In the 
pin-hole model, the f in (2) should be the same with the Vn in (1). 
The relationship between the disparity and the focus of a stereo 
image pair is achieved by the confocal condition which should 
estimate a same depth (i.e. z Z). 
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Since all parameters except n are given by camera setting, if the 
focal length of the stereo camera is just changed, the stereo 
matching can be localized by the confocal constraint within the 
range of dn which are estimated by defocus blurring. 
 

 2.2. Confocal constraint from defocus 

For an object surface S with a function s: 2 [0, ] which assigns 
a depth value to each pixel coordinate, the irradiance 
I: 2 [0, ] with another function R: 2 [0, ] on the surface 
is observed as the radius  of the defocus blur. The defocus image 
J(x) which is dependent upon the camera optics is defined as 
 

(x) (x), ( , ) (x) xnJ h I s F R d                          (4) 

 
where h: 2 [0, ] is the PSF which is defined as the impulse 
response by Green’s function [3]. The radius  is related on the 
surface s and the focus parameter F. Let a focus image be the 
irradiance map I0 of the focal surface s(F0) of a initial focus F0. 
The depth Zn=s(F0)~s’(Fn) is estimated by observing the variances 
of a defocus image In which is taken with a different focus Fn at a 
time t. The energy functional is 
 

0
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(b)                                          (c) 
   
 
 
 
 

 
(d)                                          (e) 

 
Figure 1. Real-aperture 3-D camera system, (a) definition of the 
parameters in the system, (b) left viewpoint in a near-focusing 
setup (f=Fnear), (c) right viewpoint at Fnear, (d) left viewpoint in a 
far-focusing setup (f=Ffar), (e) right viewpoint at Ffar.  
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Figure 2. Anisotropic diffusion function G and flux function . 

 
If we approximate the PSF by a generalized 2-D Gaussian as 
 

1/ 2 11
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where V is the symmetric 2×2 variance matrix with the 
determinant |V|, the eigenvectors determine the principal axes  
and  from the partial derivatives of a Gaussian and the 
eigenvalues ( +, -) determine the scalar variance along these axes. 
 

V( ) T Tr   and                     (7) 
 
r is the displacement in a polar coordinate r( )= 2 2x y . This 
derives an ellipsoid which has a combination of value-weighted 
orthogonal orientations + + +

T+ - - -
T with + - centered at a 

point. This is more general to represent a partial homogeneous 
region in a defocus images by convolution In(x)=I0(x) Gv(x). In 
the n defocus images, the smoothly varying structure is defined by 
a positive definite tensor  that denotes a gradient flux.  
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The variances in the PSF is observed by the displacement of 
tensors at each image point x. It represents a difference in 
propagations to the direction ( +, -). If the space of the functions is 
continuous with the partial derivatives in 2, (5) can be minimized 
in the PDEs by harmonic solution I(x) J: 2 [0, ]  
 

( (x),0)        x
( (x), ) (x) ( (x), ) 0n

J I
J I t div I t t

                (9) 

 
where J(x)=I(x)+  where  denotes a correction gradient symbol 
related to the amount of blurring and the divergence term div is 
implemented by a sparse Laplacian kernel in the Poisson solution 

(x) (In(x),t) n=4  with =0. The unit vector n is orthogonal to 
.  

2.3. Anisotropic disparity estimation with confocal 
constraint and recovery of pinhole image 
 
With the confocal constraint the dn from (3) for a focusing stereo 
object, we obtain the maximum window size  for the disparity 
matching.  

, ,0
max (x) xnd

l n r niD
I i                          (10) 

 
where the subscripts l and r respectively denote the left and right 
image. The sampling of pels in the focal plane in defocus stereo 
images recovers a non-blurring image for all objects i.e. pinhole 
image. The confocal disparity is achieved by iteratively updating 
the estimated disparities in the window  as  
 

2
( ) (x) (x (x ) x ( ) xrl l rE d I d d e d d       (11) 

 
The subscripts denote the matching direction, e.g. l r for left-to-
right direction and e  is a global regularization term which 
minimizes the matching error with Lagrange multiplier . The 
range of matching is restricted within the confocal depth range. 
The window using isotropic PSFs is suitable to avoid the splitting 
problem in a homogenous equifocal surface. However, the edges 
of unequifocal surfaces may not be exactly localized. Hence, we 
globally regularize the dense disparity map by an anisotropic 
diffusion. 
 

(x) (x, )l l rG d te                     (12)  

 
G( ) is an anisotropic diffusion weight which suppresses the 
propagation of only the edge direction -. 
 

2 2( / )( , ) ( , )G e                            (13) 
 
where a positive constant  controls the level of contrast of edges 
affecting the regularization process as Figure 2 shows. It enhance 
the discontinuities in - by the flux function ( )=G( +, -) . The 
detail numerical solution of energy functional in (12) is described 
in [7]. 

 
3. SIMULATION RESULTS 

 
Figure 3a and 3b show a pair of stereo images which are 
respectively focusing on the most far and the nearest object 
surfaces in 10 defocus stereo images. The image resolution is 
720 480. First, a focal consistency window from defocus images 
is estimated to localize the range of disparity matching. Figure 3c 
represents the window which is estimated from 10 defocus images. 
The disparity map is iteratively estimated by updating the fine (i.e. 
focusing) structure in the window. The sampling of the fine 
structure derives a pinhole image with minimum aperture. The 
dense disparity map and its recovered pinhole image respectively 
shown in Figure 3d and 3e show the excellent performance. 
For the subjective evaluation of the results, an image-based 
modeling and an anaglyph rendering are given in Figure 3f and 3g. 
The image-based modeling is efficient to evaluate the localization 
performance by mapping the texture image to the depth. Anaglyph 
is a stereoscopic rendering method that physically recovers the 
depth by separately projecting red- and blue-coded stereo image 
into left and right eye. The physical depth can be recovered by red-
blue glasses. The anaglyph image represents the accuracy of the 
recovered physical depth.  
We compare the performance with the anisotropic disparity 
estimation method of our previous work [7]. Since the previous 
method needs a single well-focus image pair, disparity of 
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defocusing regions in the background cannot be estimated as 
Figure 3h represents. The novel method produces a dense disparity 
map preserving structure of focusing foreground and defocusing 
background. 
In a far-focusing stereo camera setup, we exemplify the fact which 
the disparity estimation of near-defocusing object is difficult in 
Figure 4. Reliable Markov Random Fields method [8] and graph-
cut optimization [9] cannot estimate the disparity in the blurred 
regions due to the ambiguity as Figure 4b and 4c shows. However, 
the proposed method overcomes the problem as Figure 4d 
represents since the ambiguity in the blurred regions can be 
avoided by the consistency in another focus images. 

4. CONCLUION AND SUMMARY 
 
Conventional stereo algorithms use a pair of ideal focus stereo 
image with a pinhole camera assumption (i.e. focusing for all 
objects at different depths). However, in practical camera setup 
with optical real-apertures, disparity cannot be recovered on 
unfocused regions due to the increased ambiguity. This paper 
solved the problem by a novel anisotropic disparity estimation and 
pinhole image recovery embedding a stereo confocal constraint. 
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(g)                                         (h) 
 

Figure 3. Recovery of disparity map and pinhole image - (a) left 
image of a far focusing object, (b) right image of a near focusing 
object, (c) focal consistency window from 10 defocus images for 
the left view, (d) dense disparity map by the proposed method, (e) 
recovered pinhole image, (f) 3D model using 3d and 3e, (g) 
anaglyph rendering using 3d and 3e, (h) a result from our previous 
work [8]. 
 

                          (a)                                            (b) 

(c)                                          (d) 

Figure 4. Disparity estimation of a defocusing near object in a far 
focusing camera - (a) left image, (b) disparity map by Markov 
Random Fields method [8], (c) disparity map by graph-cut method 
[9] (d) disparity map by the proposed method. 
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