
A LINEAR-TIME TWO-SCAN LABELING ALGORITHM∗

Lifeng He1,3, Yuyan Chao2, and Kenji Suzuki3

1Aichi Prefectural University, Nagakute, Aichi 480-1198, Japan
Also with Shaanxi University of Science and Technology, China.

2Nagoya Sangyo University, Aichi 488-8711, Japan
Also with Shaanxi University of Science and Technology, China.
3Department of Radiology, Division of the Biological Sciences

The University of Chicago, Chicago, IL 60637, USA

ABSTRACT

This paper presents a fast linear-time two-scan algorithm for
labeling connected components in binary images. In the first
scan, provisional labels are assigned to object pixels in the
same way as do most conventional labeling algorithms. To
improve efficiency, we use corresponding equivalent label sets
and a representative label table for resolving label equiva-
lences. When the first scan is finished, all provisional labels
belonging to each connected component in a given image are
combined in the corresponding equivalent label set, and they
are assigned a unique representative label with the represen-
tative label table. During the second scan, by use of the com-
pleted representative label table, all provisional labels belong-
ing to each connected component are replaced by their repre-
sentative label. Our algorithm is very simple in principle, and
is easy to implement. Experimental results demonstrated that
the efficiency of our algorithm is superior to that of other la-
beling algorithms.

Index Terms— Image labeling algorithm, image process-
ing, image pattern recognition, connected components, label
equivalence

1. INTRODUCTION

Labeling connected components in a binary image is one of
the most fundamental operations in pattern recognition and
computer vision. Labeling is said to be more time-consuming
than any other fundamental operations such as noise reduc-
tion, interpolation, thresholding, and edge detection; there-
fore, it is a “bottleneck” in the entire processing procedure.
Many algorithms have been proposed for addressing this

issue. For ordinary computer architectures, there are the fol-
lowing four classes of algorithms: (1) Multi-scan algorithms:
Algorithms [1, 2] scan an image in forward and backward
raster directions alternately to propagate the label equivalences

∗THIS WORK WAS PARTIALLY SUPPORTED BY THE RESEARCH
ABROAD PROJECT OF AICHI PROFECTURAL UNIVERSITY, JAPAN.

until no label changes. (2) Two-scan algorithms: Algorithms
[3, 4, 5] complete labeling in two scans: during the first scan,
provisional labels are assigned to object pixels, and the la-
bel equivalences are stored in a one-dimensional (1D) or two-
dimensional (2D) table array. After the first scan or during
the second scan, the label equivalences are resolved by use
of some algorithms for resolving label equivalences. The
resolved results are generally stored in a 1D table. During
the second scan, the provisional labels are replaced by the
smallest equivalent label by use of the table. (3) Hybrid algo-
rithm [6]: Like multi-scan algorithms, this algorithm scans an
image in forward and backward raster directions alternately.
During the scans, as in two-scan algorithms, a 1D table is
used for recording and resolving label equivalences. Experi-
ments showed that four-scan was efficient for completed la-
beling. (4) Contour-tracing algorithm [7]: This algorithm
avoids analysis of label equivalences by tracing the contours
of objects (connected components).
In this paper, we propose a fast linear-time two-scan al-

gorithm for labeling connected components in binary images
by use of equivalent label sets and a representative label table
for solving label equivalences. Our algorithm is simpler than
all conventional algorithms. By carrying out experiments, we
demonstrated the efficiency of our algorithm compared with
conventional labeling algorithms.

2. OUTLINE OF OUR PROPOSED ALGORITHM

2.1. First Scan

For an N × N binary image, we use b(x, y) to denote the
pixel value at (x, y) in the image, VO for the pixel value for
objects (object pixels) and VB for that for the background
(background pixels). We assume that VO and VB are larger
than any possible number of provisional labels, and VO < VB

Like most conventional algorithms, by use of the mask
[8] shown in Fig. 1, our algorithm scans a given image in
the raster scan direction once by performing the following se-

V - 2411-4244-1437-7/07/$20.00 ©2007 IEEE ICIP 2007

b(x,y)b(x-1,y)

b(x,y-1)b(x-1,y-1) b(x+1,y-1)

the current pixel the pixel in the mask

x

y

Fig. 1. The mask for the eight-connected connectivity

quential local operations for each current pixel b(x, y):
if (b(x, y) = VB) non operation
else if (bmin(x, y) = VB) b(x, y) = m, m = m + 1
otherwise b(x, y) = bmin(x,y)

bmin(x, y) = min[{b(i, j) | ∀b(i, j) ∈ MS}],
where m (which is initialized to 1) is a provisional label,
(m=m+1) is an increment of m, min(·) is an operator for
calculating the minimum value, and MS is the region of the
mask, i.e., b(x-1,y-1), b(x, y-1), b(x+1,y-1) and b(x-1,y).

2.2. Label Equivalence Resolving

In our algorithm, equivalent label sets and a representative
label table are used for resolving label equivalences.
Suppose that provisional labels l1, · · · , ln found so far in

the first scan belong to a certain connected component. We
call the provisional labels l1, · · · , ln equivalent labels, and
the set {l1, . . ., ln} an equivalent label set.
The smallest label i in an equivalent label set is called the

representative label of the set. For convenience, we denote
such an equivalent label set by S(i). We also refer the small-
est label i to the representative label of all labels in S(i). For
example, for an equivalent label set {2, 5, 4, 3}, the represen-
tative label of the set is the smallest label, 2; thus, the set is
denoted by S(2)={2, 5, 4, 3}, and 2 is the representative label
for all labels in S(2).
The information that the representative label of a provi-

sional label j is i is recorded in the representative label table
T by use of T [j]=i. For example, if there is an equivalent la-
bel set S(2) = {2, 5, 4, 3}, then T [k]=2 for all k ∈ {2, 5, 4, 3}.
When the current object pixel in the mask is assigned a

new provisional label i, only the current object pixel is known
to belong to the connected component found there because
there is no other object pixel in the mask. Therefore, we create
a new equivalent label set for this one-pixel connected com-
ponent as S(i)={i} and initialize the representative table for
the corresponding label i as T [i]=i.
On the other hand, if the current pixel is assigned an ex-

isting provisional label j, where we assume that label j’s rep-
resentative label is u, i.e., T [j]=u (then j ∈ S(u)), and we
further assume that there are some object pixels in the mask,
then, the current pixel and these object pixels belong to the
same connected component, and they are equivalent labels.
For each of such object pixels in the mask with a provisional
label k, where T [k]=v (k ∈ S[v]), there are three cases: (a)

1
1
�

14
32

3
3

2
2

25

(a) (b)

11111

T[5]T[4]T[3]T[2]T[1]

1
1
�

14
p2

3
3

2
2

25

21221

T[5]T[4]T[3]T[2]T[1]

S(1)={1,4} , S(2)={2,3,5} S(1)={1,4,2,3,5}

Fig. 2. (a) Before, (b) after processing of pixel p.

j=k. This means that they are marked with the same pro-
visional label, and obviously nothing needs to be done. (b)
T [j]=T [k], i.e., u=v. This means that labels j and k have
the same representative label, and thus, they already belong
to the same equivalent label set. That is, the label equivalence
between labels j and k has been resolved before; therefore,
nothing further needs to be done. (c) T [j] �= T [k], i.e., u �= v.
This means that labels j and k belong to different equivalent
label sets, i.e., S(u) and S(v), respectively; therefore, the la-
bel equivalence of labels j and k should be resolved.
In our algorithm, the label equivalence in case (c) is re-

solved easily. Because labels j and k belong to the same con-
nected component, all provisional labels in S(u) and S(v)
should be equivalent. Therefore, the equivalent label sets
S(u) and S(v) should be combined into a single equivalent la-
bel set. According to the definition of the representative label,
if u < v, S(v) is combined into S(u), i.e., S(u)=S(u)∪S(v).
Because all labels in S(u) should have the representative la-
bel u, for every label l in the equivalent label set S(v), its
representative label should be changed from v to u. This pro-
cedure can be made simply by setting T [l] equal to u. On
the other hand, if u > v, then Su is combined into S(v), i.e.,
S(v)=S(u) ∪ S(v), and for all l ∈ S(u), set T [l] equal to v.
For example, in Fig. 2 (a), at the time before processing

the pixel p, there are two equivalent label sets, i.e., S(1)={1, 4}
and S(2)={2, 3, 5}, and T [1]=1, T [4]=1, T [2]=2, T [3]=2,
and T [5]=2. When we process pixel p, p is assigned label
3, and we find that there is a label equivalence between label
3 and label 4. Because T [3]=2 and T [4]=1, label 3 and label
4 belong to different equivalent label sets, i.e., S(2) and S(1),
respectively. Therefore, we should combine S(2) with S(1).
As a result, we have S(1)={1, 2, 3, 4, 5}, and T [2], T [3] and
T [5] are set to 1, as shown in Fig. 2 (b).

2.3. Second Scan

Because any label equivalence is resolved immediately when-
ever it is found, all label equivalences should be resolved as
soon as the first scan is finished. Thus, after the first scan, all
provisional labels belonging to each connected component in
a given image have a unique representative label. Therefore,
for each object pixel b(x, y), in the second scan, we merely
need to replace the provisional labels with their representa-
tive label. If we set T [VB]=VB in advance, this process can

V - 242

S(1)={1,3,7} S(2)={2,6,4}

(a) before connecting

1

2

1

2

2

1

0

1

2

3

4

5

6

7

……

3

6

7

-1

4

-1

0

1

2

3

4

5

6

7

……

rl_table next_label

7

4

0

1

2

3

4

5

6

7

……

tail_label

1

1

1

1

1

1

0

1

2

3

4

5

6

7

……

3

6

7

-1

4

2

0

1

2

3

4

5

6

7

……

rl_table next_label

4

0

1

2

3

4

5

6

7

……

tail_label

S(1)={1,3,7,2,6,4} data changed

(b) after connecting

Fig. 3. Operations for label equivalence resolving

be completed easily by the following operation:
b(x, y)=T [b(x, y)] .

3. IMPLEMENTATION OF OUR ALGORITHM

In our algorithm, for assigning the current object pixel a pro-
visional label, instead of taking the minimum provisional la-
bel in the mask, we can take an arbitrary provisional label in
the mask, if any, because every label in the mask will have
the same representative label after label equivalences (if any)
in the mask are resolved. This simplifies the labeling task by
avoiding the operation for calculating the minimum label in
the mask. For label equivalence resolving, we need to con-
sider only the case where two different equivalent label sets
are connected on the current object pixel.
Since every provisional label belongs to only one equiv-

alent label set, we can use two VB-sized 1D arrays to realize
connection lists for equivalent label sets. One array, denoted
n label[], is used to represent the label next to the previous
label, e.g., n label[i]=j means that the label next to label i is
j. In particular, we use n label[i]=−1 for indicating that la-
bel i is the tail label, i.e., there is no label next to label i. The
other array, denoted t label[], is used for indicating the tail
label of an equivalent label set, e.g., t label[u]=v means that
the tail label of S(u) is v.
Creation of a new equivalent label set S(m)={m} can be

made by the following operations:
rl table[m] = m, n label[m] = −1, t label[m] = m.
On the other hand, to resolve the label equivalence be-

tween provisional labels x and y that belong to different pro-
visional equivalent label sets, e.g., S(u) and S(v), where
u=rl table[x] and v=rl table[y], without loss of generality,
suppose that u < v, i.e., S(v) is combined into S(u), we
should connect the head of S(v) to the tail of S(u), set the
tail of S(u) as the tail of S(v), and set u as the representative
label for every label in S(v). To do this, the following simple
operations are performed:

u = rl table[x], v = rl table[y];
i = v;
while i �= −1 do

rl table[i] = u;
i = n label[i];

end while
n label[t label[u]] = v;
t label[u] = t label[v].

For example, rl table[], n label[] and t label[] for the
equivalent label sets S(1)={1, 3, 7} and S(2)={2, 6, 4} are as
shown in Fig. 3 (a). If provisional labels 6 and 3 are equiv-
alent labels, then the results of the above operations are as
shown in Fig. 3 (b).

4. EXPERIMENTAL RESULTS

We implemented our algorithm with the C language on a PC-
based workstation (Intel Pentium D 3.0GHz + 3.0GHz CPUs,
2GB Memory, Mandriva Linux OS). All data were obtained
by averaging of the execution time for 5,000 runs.
Forty-one noise images of each of five sizes (32×32, 64×64,

128×128, 256×256 and 512×512 pixels) were used for test-
ing (a total of 205 images). For each size, the 41 noise images
were generated by thresholding the images containing uni-
form random noise with 41 different threshold values from 0
to 1,000 with a step of 25. Because connected components
in such noise images have a complicated geometrical shape
and complex connectivity, severe evaluation of labeling algo-
rithms can be performed with these images.
On the other hand, 50 natural images, including landscape

images, aerial images, fingerprint images, portrait images,
and text images, obtained from the Standard Image Database
(SIDBA) and the image database of the University of South-
ern California were used for realistic testing of labeling algo-
rithms. In addition, seven texture images and 25 medical im-
ages were used for testing. All of these images were 512×512
pixels in size, and were transformed into binary images by use
of Otsu’s threshold selection method [9].
Because it was reported in [6] that the hybrid algorithm

is superior to other conventional multi-scan and two-scan la-
beling algorithms, and the contour-tracing algorithm is the
most recent algorithm, we mainly compared our algorithm
with these two algorithms. The program of the hybrid algo-
rithm was provided by the authors and that of the contour-
tracing algorithm was downloaded from the authors’ web site
at http://dar.iis.sinica.deu.tw/Download.
We use all noise images to test linearity of the execution

time versus image size. As shown in Fig. 4, all of the three
algorithms have linear characteristics. The maximum running
time of our algorithmwas smaller than the average time of the
hybrid algorithm and the contour-tracing algorithm; thus, our
algorithm is the fastest.
We tested the three algorithms on all realistic images. The

results, shown in Table 1, also demonstrated that our algo-
rithm is the fastest algorithm for all images.

V - 243

0.01

0.1

1

10

100

1000 10000 100000 1000000
the number of pixels in an image

th
e

ex
ec

ut
io

n
tim

e
 [m

se
c]

the hybrid algorithm (max.) the hybrid algorithm (mean)
the contour-tracing algorithm (max.) the contour-tracing algorithm (mean)
the proposed algorithm (max.) the proposed algorithm (mean)

Fig. 4. Linearity of the execution time versus image size

Table 1. Comparison of the execution time [msec]
Image type Hybrid Contour Ours

natural
max.
mean
min.

18.4
13.7
9.6

3.8
2.4
1.2

2.3
1.5
1.0

medical
max.
mean
min.

14.9
13.4
11.4

2.6
1.9
1.5

1.5
1.2
0.9

textural
max.
mean
min.

28.5
27.4
26.4

3.7
2.7
1.5

2.0
1.6
1.1

We also compared the execution time of our algorithm
with that of other fundamental image-processing methods:
thresholding, edge detection, and noise reduction. We used
Otsu’s threshold selection method [9] for thresholding, Marr-
Hildreth edge detector [10] for edge detection, and a median
filter with a kernel size of three by three pixels (the small-
est one) [8] for noise reduction. The execution times for all
realistic images are shown in Table 2. The results illustrate
that our algorithm takes the least time among all fundamental
image-processing methods.
Although the basic operations of our algorithm can be re-

alized by the union-find algorithm [11], as reported in [7],
the union-find algorithm based labeling algorithm [12] was
slower than the contour-tracing algorithm. By using the sim-
ple data structure and combining two equivalent label sets
as soon as they are found to be equivalent, our algorithm
achieved a much better performance.

5. CONCLUDING REMARKS

We presented a fast two-scan labeling algorithm. Our strategy
for solving label equivalences is much simpler than conven-
tional two-scan algorithms. The experimental results demon-
strated that our algorithm is superior to other labeling algo-
rithms. By use of our algorithm, the bottleneck problem with
labeling would be resolved in most image-processing/pattern-
recognition systems.
Due to the limitation of space, an efficient implementation

of our algorithm is omitted in this proceedings, but will be
presented at the conference, and in a full paper in a journal.

Table 2. Comparison of our algorithm with other fundamen-
tal image-processing methods

Algorithm Execution time [msec]
our algorithm (max.) 2.3
our algorithm (mean) 1.5

thresholding 4.6
edge detection 9.6
noise reduction 51.5

6. REFERENCES

[1] R. M. Haralick, Some neighborhood operations, pp.
11–35, Plenum Press, Addison-Wesley, Reading, MA,
1981.

[2] A. Hashizume, R. Suzuki, H. Yokouchi, and et al., “An
algorithm of automated rbc classification and its evalu-
ation,” Bio Medical Engineering, vol. 28(1), pp. 25–32,
1990.

[3] A. Rosenfeld and J. L. Pfalts, “Sequential operations in
digital picture processing,” Journal of ACM, vol. 13(4),
pp. 471–494, October 1966.

[4] R. Lumia, “A new three-dimensional connected com-
ponents algorithm,” Computer Vision, Graphics, and
Image Processing, vol. 23(2), pp. 207–217, 1983.

[5] Y. Shirai, Labeling connected regions, Springer-Verlag,
1987.

[6] K. Suzuki, I. Horiba, and N. Sugie, “Linear-time
connected-component labeling based on sequential local
operations,” Computer Vision and Image Understand-
ing, vol. 89, pp. 1–23, 2003.

[7] F. Chang, C. J. Chen, and C. J. Lu, “A linear-
time component-labeling algorithm using contour trac-
ing technique,” Computer Vision and Image Under-
standing, vol. 93, pp. 206–220, 2004.

[8] A. Rosenfeld and A. C. Kak, Digital Picture Processing,
vol. 2, 1982.

[9] N. Otsu, “A threshold selection method from gray-level
histograms,” IEEE Trans. Systems Man and Cybernet-
ics, vol. 9, pp. 62–66, January 1979.

[10] D. Marr and E. Hildreth, “Theory of edge detection,” in
Proc. Royal Soc. 1980, vol. B207, pp. 187–217, London.

[11] A. V. Aho, J. E. Hopcroft, and J. D. Ullman, The Design
and Analysis of Computer Algorithms, Addison-Wesley,
Reading, Mass., 1974.

[12] C. Fiorio and J. Gustedt, “Two linear time union-find
strategies for image processing,” Theoretical Computer
Science, vol. 154(2), pp. 165–181, February 1996.

V - 244

