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ABSTRACT

The linear filtering of color images using hypercomplex convolution
and Fourier transforms provides a holistic treatment of color by rep-
resenting pixels as 3-space vector quantities within the quaternion
algebra. But, this technique is limited to images with at most three
channels of information, e.g., RGB images. Linear filtering of color
images by representing color pixels as multi-vectors embedded in a
geometric algebra is presented. This multi-vector representation has
similar convolution and Fourier transforms as the quaternion based
filters, but provides an avenue for multi-spectral images composed
of more than three channels.

Index Terms— Geometric Algebra, Multi-vector, Color Image,
Convolution Filtering, Spatio-Color Filtering

1. INTRODUCTION

Classic linear filtering, typically implemented by convolution in the
spatial domain, can also be implemented in the spatial frequency do-
main by making use of the Fourier transform. Historically for color
image processing this is done by iterating over the color components
of the image. This iteration does not do justice to the fact that the
information in one color component is usually correlated to the in-
formation in the other components. To account for, and exploit, this
correlation all three color components should be treated in a holistic
fashion. Thornton and Sangwine [1] partially achieved a single spec-
trum by working with the chromaticity information alone, ignoring
the luminance. McCabe, et al. [2] again used a complex Fourier
transform to handle chromatic information using an alternate color
encoding. Later, Sangwine and Ell [3] used quaternions to encode
entire images which leverages the expressive power of quaternion
algebra. Recently, it was shown in [4] that the chromatic spectrum
is embedded within the hypercomplex (quaternion) spectrum. This
work gives yet another holistic encoding. A two-dimensional vector
space can be embedded into a four-dimensional geometric algebra.
By encoding color images as multi-vectors, one gains the same ex-
pressive power as quaternion based systems, but obtains an alterna-
tive geometric interpretation.

The next section provides a brief introduction to the four di-
mensional Geometric Algebra G2. The contents are sufficient to
understand the rest of the work. In the subsequent section is pre-
sented a technique of encoding color images using multi-vectors
taken from G2. Section 4 shows the construction of chromatic-
luminance edge detection filters using a simple technique that en-
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compasses the quaternion based color edge detectors. This is done
to show the differences and similarities between this system and the
quaternion-based system. Section 5 details the Geometric Fourier
Transform used to convert the color images into the frequency do-
main. Section 6 includes the multi-vector convolution operator for-
mulae, including the bi-convolution and handed-convolution, and
spectral versions of the same equations.

2. GEOMETRIC ALGEBRA

The vector space R
2 can be embedded into the geometric algebra

G2. As with quaternions, G2 has two structures. First, it is a 4-
dimensional vector space over R, hence linear matrix theory can be
used as an analysis tool. Second, it is an associative non-commutative
algebra, whose product is called the geometric product. Members of
G2 are called multi-vectors. Let {e1, e2} be an ortho-normal basis
of R

2. The algebra G2 is based on two rules:

eiei = 1 and eiej = −ejei, i �= j (1)

The vector space G2 is 4-dimensional with basis:

1 spans 0-vectors, scalars,
{e1, e2} spans 1-vectors, vectors, and

e1e2 spans 2-vectors, bi-vectors.

Hence an arbitrary multi-vector A ∈ G2 can be written as

A = a0 + a1e1 + a2e2 + a12e1e2, a0, a1, a2, a12 ∈ R.

As shorthand notation, let the pseudo-scalar e1e2 = I2. Since I2
2 =

e1e2 e1e2 = −e2e1 e1e2 = −1, complex numbers are an algebraic
system embedded in G2. This embedding defines the spinor sub-
algebra, S,

S = {α + βI2|α, β ∈ R} ⊂ G2.

A complex number or spinor is a scalar + bi-vector. Therefore an
arbitrary multi-vector A ∈ G2 can be rewritten as a spinor plus a
vector as

A = (a0 + a12I2) + (a1e1 + a2e2) .

It is important to note that the pseudo-scalar I2 commutes with com-
plex numbers but anti-commutes with vectors, i.e.,

[A] I2 = [(a0 + a12I2) + (a1e1 + a2e2)] I2

= I2 [(a0 + a12I2)− (a1e1 + a2e2)]

A rotation of a vector v ∈ R
2 through an angle θ is represented by

the unit spinor (complex number) eI2θ/2 in the formula

v′ = e−I2θ/2veI2θ/2 = e−I2θ/2e−I2θ/2v = e−I2θv
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Unlike complex numbers being used to denote 1-vectors with unit
complex numbers being rotation operators, this algebra clearly sepa-
rates vectors from rotation operators (i.e., the operators are spinors).
This issue is discussed, for example, by Douglas Quadling in [5].
The two-sided form of this formula is so that a scalar placed in the
same formula is left unchanged as

s′ = e−I2θ/2seI2θ/2 = e−I2θ/2eI2θ/2s = e0s = s.

Hence the same rotation operator can be used on full multi-vectors,
but it only rotates the vector part. The grade projectors 〈〉k : G2 �→
G2 are the maps

〈A〉0 = a0, 〈A〉1 = a1e1 + a2e2, 〈A〉2 = a12I2

which extract the scalar, vector and bi-vector portion of a multi-
vector, respectively. These are the geometric extensions to the real-
and imaginary-part operators in complex numbers. Two involutions
are of interest. First is the vector conjugation, denoted here with an
over-arrow, which is defined as

−→
A = (a0 + a12I2)− (a1e1 + a2e2)

The second is the bi-vector conjugation, denoted with an over-bar,
and is defined as

Ā = (a0 − a12I2) + (a1e1 + a2e2)

which is exactly the complex conjugate when the multi-vector is
from the complex sub-algebra. These involutions allow us to write
the following identities for the grade projectors

〈A〉0 = 1
2

�
�A + Ā

�
, 〈A〉1 = 1

2

�
A− �A

�
, and

〈A〉2 = 1
2

�
A− Ā

�
.

(2)

We have seen that an arbitrary multi-vector can be written as either
a direct sum of a scalar, a vector and a bi-vector, or as a direct sum
of a spinor and a vector. Much like the quaternions, there is yet
another alternative; the symplectic form. Starting with the spinor-
vector form A = s0 + v where s0 = a0 + a12I2 and v = a1e1 +
a2e2, we may factor the vector into a unit vector and a spinor in
four ways: v = a1e1 + a2e2, v = (v1 − v2I2) e1 = s̄1e1, v =
(v1I2 + v2) e2 = s2e2, and v = e2 (−v1I2 + v2) = e2s̄2. So that
the factors are related as

v = e1s1 = s̄1e1 = s2e2 = e2s̄2.

This allows any arbitrary multi-vector to be written in multiple sym-
plectic forms, e.g., as

A = s0 + e1s1 = s0 + s2e2 = s0 + s̄1e1 = s0 + e2s̄2.

These multiple choices of factoring the same vector are used exten-
sively to simplify equations. For a complete treatment of G2 as a
system for plane geometry analysis see Calvet [6].

3. MULTI-VECTOR COLOR IMAGES

A color image, f , composed of the red-green-blue triplet {r, g, b}
can be split into the vector chromaticity image and scalar luminance
image using a technique similar to that described by Thornton and
Sangwine [1]. Namely, let the vector chromatic image be encoded
as

v =
�

1
2
r (g + b) e1 +

√
3

2
(g − b) e2

�
= v1e1 + v2e2

And let the scalar luminance image be given by

L = 1
3

(r + g + b)

Hence the color image, f , is given in G2 as the multi-vector

f = L + v, L ∈ R, v ∈ R
2

Decoding the image back into the rgb-triplet is given as

r = L + 2
3
v1, g = L + 1√

3
v2 − 1

3
v1, b = L− 1√

3
v2 − 1

3
v1.

Although the basic algebra is the same, this encoding is different
from that of Thornton and Sangwine in that we have not created a
complex chromaticity image and a separate gray-scale image. In-
stead we have created a vector chromaticity image added to a scalar
luminance image. This addition is possible as a multi-vector in the
geometric algebra G2. There is no comparable notion of adding a
scalar to a complex without inter-mixing the real-part of the com-
plex image with the scalar image. Obviously, we could have used
any luminance-chrominance image decomposition of the rgb-triplet;
XYZ, YUV, YIQ, etc. For example, the YUV space image with
Y mapped into the scalar and UV mapped into the vector part of a
multi-vector would work also. This would then allow us to include
the work of McCabe, et al. [2] on spatio-chromatic image processing
into our framework.

The encoding of the color image into a scalar + vector multi-
vector without the use of the complex sub-algebra is a key step in
this work. This allows us to separate operator from operand in the
hyper-complex Fourier transform later.

4. COLOR EDGE DETECTION FILTERS

The classic Prewitt filter can be extended in a number of ways using
left and right convolution masks with multi-vector coefficients taken
from G2. The following masks, for example, are used to detect hor-
izontal edges in an image f . Each mask filters the luminance and
chrominance portions differently (the key to building these filters is
to note that −1 can be factored in two ways: −1 = (+1) (−1) =
(I2) (I2)). The following icons depict these filters

H1 :
1

6

�
�

1 1 1
0 0 0
1 1 1

	


�
� f

	


�
�

1 1 1
0 0 0
−1 −1 −1

	



H2 :
1

6

�
�

1 1 1
0 0 0
I2 I2 I2

	


�
� f

	


�
�

1 1 1
0 0 0
−I2 −I2 −I2

	



H3 :
1

6

�
�

1 1 1
0 0 0
I2 I2 I2

	


�
� f

	


�
�

1 1 1
0 0 0
I2 I2 I2

	



To understand the filter operation examine the convolution centered
on the transition between two horizontal color regions, c1, and c2

where ci = si + vi, si ∈ R, vi ∈ R
2, i = 1, 2. Filtered outputs

for the each mask at the transition c1 → c2 are given by

H1 [c1 → c2] = 1
2

(c1 − c2) = 1
2

(s1 − s2) + 1
2

(v1 − v2)

H2 [c1 → c2] = 1
2

(c1 − I2c2I2) = 1
2

(s1 + s2) + 1
2

(v1 − v2)

H3 [c1 → c2] = 1
2

(c1 + I2c2I2) = 1
2

(s1 − s2) + 1
2

(v1+ v2)
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H1 detects edges in both the luminance and chrominance channels.
H2 smoothes (averages) the luminance but edge detects chromi-
nance. In contrast H3 smoothes the chrominance but edge detects
in luminance. Hence the chromin-edge is given as

〈H1〉1 = 1
2

(v1 − v2) = 〈H2〉1
and the lumen-edge is given as

〈H1〉0 = 1
2

(s1 − s2) = 〈H3〉0 .

These grade-projection operators can be replaced with their alge-
braic equivalents from equation (2). For chrominance edge detectors
H1 and H2 where the chrominance transition does not change, the
result is zero. Where the chrominance transition consists of oppos-
ing colors, the resulting edge is maximal and matches the starting
chrominance value v1. This result is comparable to the quaternion
based edge detection filter described in [3]. In that work the mask
consisted of quaternion rotation operators whose rotation axis was
the gray-line and the rotation angle was π radians. The action of
the H2 filter is similar but the response for a maximal transition is
different. The other two filters are completely new. The Sobel and
Kirsch filters can be generalized in the same way. The type-2 Sobel
filter,HSobel,2, is given by

1

8

�
�

1
√

2 1
0 0 0
I2 I2 I2

�
�
�
� f

�
�
�
�

1
√

2 1
0 0 0
−I2 −I2 −I2

�
�

And the type-2 Kirsch filter,HKirsch,2, is given by
�
�
√

3I2

√
5

√
5√

3I2 0
√

5√
3I2

√
3I2

√
3I2

�
�
�
� f

�
�

×
�
�
−√3I2

√
5

√
5

−√3I2 0
√

5

−√3I2 −√3I2 −√5I2

�
�

As before for the Prewitt-type filters, the luminance- and chrominance-
only filters are given by the 0-grade and 1-grade projectors of the
filter outputs.

Like gray-scale edge-detection filters, these color filters provide
the location of an edge and, using intensity, the sharpness of the
edge, but they also provide, via the response color, the relative ori-
entation of the colors in the transition. This additional information
can be used to refine color image segmentation processes.

5. GEOMETRIC FOURIER TRANSFORM (GFT)

This section defines the Geometric Algebra extensions to the Fourier
transform. Then, using a decomposition (split) operation, it will be
shown that specialized transformation code is unnecessary since all
the defined transforms can be encoded using a series of standard
complex Fourier transforms.

Definition (Fourier Transforms) The four forms of Geometric
Fourier transforms are given by

F±L [f (n, m)] � 1

k

M−1�
m=0

N−1�
n=0

e∓ 2πI2( mv
M

+ nu
N )f (m, n)

= F±L [v, u]

F±R [f (n, m)] � 1

k

M−1�
m=0

N−1�
n=0

f (m, n) e∓ 2πI2( mv
M

+ nu
N )

= F±R [v, u]

(3)

with their corresponding inverses given by changing the sign of the
exponential and summing over u and v. The scale factor k =

√
MN .

The transforms with positive exponent are referred to as the forward
transforms and the negative exponent forms are the reverse trans-
form.

Starting with the image function in symplectic form as f (n, m) =
s0 (n, m) + e1s1 (n, m), and because the Fourier transform is a lin-
ear operator, we may split the right-handed transform across the two
spinors as

F±R [f (n, m)] = F±R [s0 (n, m)] + e1F±R [s1 (n, m)]

Spinors are equivalent to complex numbers, so the standard complex
Fourier transform can be used to write the right-sided transform as

F±R [u, v] = S0 [u, v] + e1S1 [u, v]

where Sk [u, v] is given by the standard complex Fourier transform,
FC [], via the sequence of mappings

Sk [u, v] = FC

�
sk (n, m)| I2→i

����
i→I2

(4)

where i =
√−1 is the standard complex operator. This equation

says that the spinor is first rewritten as a complex number, then com-
plex Fourier transformed, and finally the resulting complex spectrum
is converted back into a spinor spectrum. The left-sided transform is
likewise given as

F±L [u, v] = S0 [u, v] + S2 [u, v] e2

which is found by factoring the vector part as v (n, m) = s2 (n, m) e2

and then proceeding through the same complex Fourier transform
mapping sequence given in (4). Note that s1 and s2 are differ-
ent; the real and imaginary parts of the spinor have swapped roles.
The explicit relationships between s1 and s2 are: s2 = s̄1 I2 and
s1 = s̄2 I2. The inverse transforms are done by writing the spec-
tra in symplectic form and inverting (4) so that the inverse complex
Fourier transform maps the components back into the spatial do-
main.

6. CONVOLUTION OPERATIONAL FORMULAE

Owing to the non-commutative multiplication of multi-vectors there
are three general convolution operators available.

Definition (Convolution Operators) The left-, right- and bi-
convolution operators are defined, respectively, as:

hL ◦ f �
N−1�
i=0

M−1�
j=0

hL (i, j) f (n− i, m− j)

f ◦ hR �
N−1�
i=0

M−1�
j=0

f (n− i, m− j) hR (i, j)

hL ≺ f � hR �
N−1�
i=0

M−1�
j=0

hL (i, j) f (n− i, m− j) hR (i, j)

where f is the input image and hL and hR are convolution masks.
Using symplectic forms the bi-convolution equation can always be
converted to a handed-convolution. We demonstrate this by focusing
on the left-most terms in the bi-convolution equation to convert the
equation to a right-handed convolution. Starting with the left-mask
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and image function write each in symplectic form as hL = h0+e1h1

and f = f0 + f2e2 , then their product is given by

hLf = (h0 + e1h1) (f0 + f2e2)

= h0f0 + e1 (h1f0) + (h0f2) e2 + e1 (h1f2) e2

= f0h0 + e1f0h1 + f2h0e2 + e1f2 (h1e2)

= f0h0 + e1f0h1 + f2 (h0e2) + e1 (f2e2) h̄1

= f0h0 + e1f0h1 + (f2e2) h̄0 + (e1e1) f1h̄1

= f0h0 + e1f0h1 + e1f1h̄0 + f1h̄1

where at each step the terms in the parentheses are modified on the
next line. Hence the triple product of the bi-convolution is given by

hL f hR = f0 (h0hR)+e1f1

�
h̄0hR

�
+f1

�
h̄1hR

�
+e1f0 (h1hR)

Notice that the left mask terms have been commuted with the im-
age function. Each of these terms, when placed back into the bi-
convolution equation is of the form of the right-handed convolution
equation so that

hL ≺ f � hR = f0 ◦ (h0hR) + e1f1 ◦
�
h̄0hR

�

+f1 ◦
�
h̄1hR

�
+ e1f0 ◦ (h1hR)

Note that this equation only includes four terms, much like the invo-
lution based quaternion version of the same formula. What remains
for us to determine is the spectral form of the handed-convolution
equation. Before doing this let’s re-examine the Prewitt filter to
check these results. By definitionH2 has

hL =

�
�

1 1 1
0 0 0

+I2 +I2 +I2

�
� , hR =

1

6

�
�

1 1 1
0 0 0
−I2 −I2 −I2

�
�

so that h0 = hL and h1 = 0 which reduces the bi-convolution to
two terms, i.e., hL ≺ f � hR = f0 ◦ (h0hR) + e1f1 ◦

�
h̄0hR

�
.

Combining the mask terms we obtain

h0hR =
1

6

�
�

1 1 1
0 0 0

+I2 +I2 +I2

�
�
�
�

1 1 1
0 0 0
−I2 −I2 −I2

�
�

=
1

6

�
�

1 1 1
0 0 0
1 1 1

�
�

and

h̄0hR =
1

6

�
�

1 1 1
0 0 0
−I2 −I2 −I2

�
�
�
�

1 1 1
0 0 0
−I2 −I2 −I2

�
�

=
1

6

�
�

1 1 1
0 0 0
−1 −1 −1

�
�

hence the image’s luminance scalar-part, f0, is smoothed and the
image’s chrominance vector-part, e1f1, is differenced which is con-
sistent with our earlier direct analysis of this filter.

The first step in writing the spectral form of the convolution op-
erator is to prove spatial shift formulas. If an image, f(n, m), is
shifted as f(n+n0, m+m0), then the two left-sided Fourier trans-
forms (forward and reverse) are given by:

F±L [f (m + m0, n + n0)] = e±I22π( m0v
M

+
n0u
N )F±L [v, u]

And the right-transforms yield:

F±R [f (m + m0, n + n0)] = F±R [v, u] e±I22π( m0v
M

+
n0u
N )

Using the Geometric Fourier transform, the shifted transform and
one-sided convolution definitions, the spectral-domain formula can
be derived as:

F±L [f ◦ h (n, m)] =
√

MN
�
F±L

0 [v, u] H±L [u, v]

+e1F
±L
1 [v, u] H∓L [u, v]

�

where F [v, u] is written in symplectic form as

F±L [v, u] = F±L
0 [v, u] + e1F

±L
1 [v, u] .

The right-hand convolution follows a similar formula. Note the use
of both the forward and reverse left transform on the mask.

7. CONCLUSIONS

The representation of color pixels as multi-vectors in the geomet-
ric algebra G2 provides the starting point for a system of holistic
image filters. In particular a G2 based linear convolution equation
was shown useful in extending standard scalar image filters, e.g., the
Prewitt edge-detector. By leaving the pseudo-scalar out of the color
encoding a simple Fourier transform was demonstrated and used to
derive spectral versions of the convolution equations. This work fo-
cuses on the mechanics of the G2 algebra as a tool for color image
processing, but leaves unexplored the geometric insights that can be
gained and applied in the design of new classes of filters. Also un-
touched are higher dimensional geometric algebras which will lend
themselves to multi-spectral image filtering and analysis techniques.
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