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ABSTRACT

In linear gray-scale image convolution filters, pixel values can only
be scaled. But, in color image convolution filters, which treat color
image pixels as vectors, pixel values can be submitted to a host of
affine transforms: scaling, reflection, rotation and shearing. Hyper-
complex affine transforms are presented which extend linear color
image convolution filtering techniques.

Index Terms— quaternion, affine transform, color image, con-
volution filter

1. INTRODUCTION

Fundamental to image processing is the convolution operator. At
its basic arithmetic level convolutions consist of shifted (in image
index-space) and scaled (in pixel value-space) accumulations based
on the relative location of scalar values in the convolution filter mask
image. Typical color-image processing consists of separating the
color channels of the image and applying scalar convolution filters
to each channel then merging the channels into the final image. This
restricts the convolution operator to the scaling of pixel-values. By
treating the pixel values as hypercomplex vectors the convolution
operator also has available stretching, reflecting, rotating and multi-
ple shear operations.

Examination of the 1D discrete convolution operation will pro-
vide insight for later detailed discussions. The 1D discrete convolu-
tion is defined as:

Yn =

K�

k=1

mkxn−k, n = 1, 2 . . . N

Each summand, mkxn−k, is a linear map that scales the image
pixel value, xn−k, by the mask value mk. Let yn,k = mkxn−k,
then the convolution is simply the sum of multiple linear maps:

Yn =

K�

k=1

yk,n

Over the real numbers, the classical form for a linear map is y = mx,
where y, m, x ∈ R . In contrast the general linear map over the
quaternions, H, takes the form

y = L1xR1 + L2xR2 + L3xR3 + . . . =

∞�

n=1

LnxRn
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where y, x, Ln, Rn ∈ H. Each summand, as expressed in the equa-
tion above, cannot be reduced to a single monomial as is the case
for real-valued maps because quaternion multiplication is not com-
mutative. This creates difficulties in manipulating the convolution
operators, but for the same reason expresses powerful utility. The
real linear map can only encode pixel scaling (i.e., pixel x is scaled
by m). The quaternion linear map, by contrast, can encode dila-
tions, reflections, rotations and shears. Understanding the unique
linear forms for each of these quaternion maps is recommended if
linear hypercomplex convolution filters are to be useful as a tool for
color-image processing.

2. QUATERNIONS

In this work we use the hypercomplex numbers of Hamilton [1],
namely the quaternion 4-tuple (w, r, g, b) denoted in hypercomplex
form as: q = w + ir + jg + kb where w, r, g, b ∈ R and the
hypercomplex operators follow the rule

ijk = i2 = j2 = k2 = −1

All quaternions can be split into scalar and vector parts, i.e.,

q = S [q] + V [q]

where S [q] = w and V [q] = ir + jg + kb. Conjugation is de-
noted with an over-bar which negates the vector part. Color pixel
values are encoded into the vector part of a quaternion making a pure
quaternion. We denote pure unit length quaternions as μ, scalars as
α and β , and finally pixel values as p.

3. LINEAR QUATERNION AFFINE MAPS

It is well known that vector rotation and dilation (stretching and com-
pression) in 3D can be encoded as a linear quaternion monomial
map. Less known is their ability to encode reflections [2], which re-
sults from the fact that any rotation can be decomposed into a pair of
nested reflections. Even more obscure is the use of multi-nomial lin-
ear quaternion maps to encode shears. Some works in the literature
stop at monomial maps and hence assume only rotations, reflections
and simple dilations can be encoded with any linear quaternion map.
See, for example, Kuipers [3, p. 345]. Reflections are formed as
monomial maps, but complex dilations (beyond scaling toward or
away from the origin) and shears require binomial and tetranomial
maps, respectively. It should be noted that all the operators presented
herein map vectors to vectors, which is necessary if the convolution
operator is to map images into images. Also note that the list of
maps presented here is by no means exhaustive; this short list is sim-
ply used to illustrate their effectiveness.
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3.1. Rotations

Rotations of three-dimensional vectors p are encoded with a unit
quaternion q in the well known linear quaternion equation [4]

Rq [p] = qpq̄

The axis of the rotation corresponds to the eigen-axis of the quater-
nion q and the angle of rotation is twice the eigen-angle of q. The
composition of two rotations Rq [ ] and Rr [ ] is given by

Rr [Rq [p]] = r (qpq̄) r̄ = (qr) p(qr)

Finally, the inverse rotation, R−1
q [ ], of Rq [ ] is given by

R−1
q [p] = q̄pq

The rotation monomial map has been used to construct a number of
convolution filters that perform color-edge detection [5].

3.2. Reflections

Planar reflections, denoted Rμ [ ], of three-dimensional vectors p
across a plane defined by its normal unit vector μ (i.e., a pure unit
quaternion) are encoded in the linear quaternion equation

Rμ [p] = μpμ

Composite reflections create rotations. For example, the composi-
tion of two reflections Rμ1 [ ] and Rμ2 [ ] is

Rμ2 [Rμ1 [p]] = μ2 (μ1pμ1) μ2

= − (μ2μ1) p(μ2μ1) = −qpq̄.

where q = μ2μ1 provided that μ2 �= μ1. Reflections are their own
inverse operations, so applying the same reflection twice (i.e., μ2 =
μ1) returns the original vector.

3.3. Shears

This section introduces, for the first time, the quaternion shear oper-
ator. There are multiple ways to shear a 3D object. We address two
particular shears: the axial- and beam-shear. Shears cannot be built
from monomial maps, they require at least a binomial form. Much
like rotations being decomposed into a pair of reflections, rotations
can also be decomposed into three 2D beam-shears. This property,
in matrix form, is used to perform fast 3D volume rotations [6].

The simplest shears are axial neutral shears. They are axial neu-
tral since the axis line has no shear effect. The axial shear equation
is

Sα,μ3 [p] = p
�
1− α

2
μ3

�− α
2
μ2pμ1,

where μ3 is the axis of the shear and α is the shear factor. It is
required that μ1⊥μ2⊥μ3 and μ1μ2 = μ3 (i.e., they form an orthog-
onal right-handed triad). This requirement ensures that vectors are
mapped to vectors. Note that this equation reduces to the identity
when α = 0. Reversing the shear factor α reverses the axis of the
shear (reversing μ3 must be matched by a reversal of μ1 to maintain
the right-handed triad). Reversing the shear factor also forms the
inverse shear.

The next level of shears is the 2D beam-shears as defined by
Chen and Kaufman [7]. The quaternion binomial form of this shear
is

Sα,β,μ3 [p] = p
�

1
2

+ α
2
μ3

�− α
2
μ2pμ1

+
�

1
2

+ β
2
μ2

�
p− β

2
μ1pμ3.

where again μ1, μ2 and μ3 form a right-handed triad. Notice that
this is a tetranomial equation; it cannot be reduced to fewer terms.

3.4. Dilations

In this section we will introduce, for the first time, two dilation op-
erations: axial- and radial-dilation. The first is rectilinear, and as the
name implies, the second is radial. An axial-dilation is given by the
binomial equation as

Dμ,α [p] = 1+α
2

p + 1−α
2

μpμ

where the axis of dilation or compression is defined by μ. Compres-
sion occurs when dilation factor, α, satisfies |α| < 1, dilation occurs
when |α| > 1 and identity occurs when α = 1. Negative values
for α yield vector reversal, hence simple reversal (with no compres-
sion or dilation) occurs when α = −1. The same equation with a
reciprocal factor defines the inverse map.

Radial dilation is given by the binomial equation

Dμ,α [p] = 2+α
2

p + α
2
μpμ

which expands space outwards from an invariant line defined by a
unit vector μ. This equation reduces to an identity when α = 0.
Dilation occurs when α > 0. Compression occurs when α < 0.
As a result the image is complemented (in an opposing color sense)
when α = −2. The same equation with a reciprocal expansion
factor defines the inversion.

4. SOME EXAMPLES

This section makes concrete the discussion of the previous section by
applying each of the maps to two different images. The first image is
the well known ‘Lena’ image. The second is a test image consisting
of equally spaced pixel values along the edge of the RGB color cube
but scaled to 90% of full scale. Each image is represented in a gray-
centered RGB color space where the origin is centered at mid-gray.
This color-space allows for an efficient, color preserving, clipping
algorithm that is necessary when the transforms map a color outside
the color-cube. For details see Sangwine and Ell [8].

The first two columns of Figure 1 show the result of applying
each linear map, starting with the original images in the first row.
The third column in the figure consists of a 3D color scatter plots
showing the locations, in a color-cube, of each pixel in the Lena
and test images. Each scatter-point is colored to represent the corre-
sponding pixel color from the image. As can be seen the test image is
used to emphasize the various distortions caused by the linear maps.
Vector coordinates are ordered: red, green, blue. The parameters for
each map are:

Rotation: μ = i, angle = −15◦,

Reflection: μ1 = (i− j) /
√

2,
Axial-Shear: μ1 = i, μ2 = k, α = 0.1,
Axial-Dilation: μ1 = k, μ2 = i, α = 0.4,

Radial-Dilation: μ1 = (i + j + k) /
√

3, α = −0.6, and
Beam-Shear: μ1 = i, μ2 = j, α = 0.2, β = 0.1.

Calling attention to the radial-dilated image, one finds that if the axis
of dilation is the grey-line (as in this example) and if the compres-
sion factor is 100%, then the resulting image would consist only
of the luminance data from the original image. Likewise, if the
axial-dilation along the same axis is compressed 100% (making it
a plane-projection operator) then the resulting image would consist
only of the chrominance data from the original image. These two
maps alone can be used to build pre-filters that independently sep-
arate the luminance and chrominance channels of an image without
the need to pre-transform the images to a luminance-chrominance
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color-space representation. The results of these pre-filters could then
be cascaded with another set of post-filters. The final results could
be output directly in RGB color space by simply connecting those
filters in parallel, i.e., summing their outputs. This would all be
done using linear quaternion algebra, without the need for proce-
dural algorithms. However, this does not mean the post-filters can
only affect the data channel they are processing. Even though, for
example, the luminance post-filter receives only luminance data it is
still a full color filter and its outputs can contain chrominance data.

It should be pointed out that all of these maps can be described in
terms of a point-mask two-sided convolution operation. These maps
represent the color-space extension to point-mask gray-scale image
scaling operations. As such, they should provide a rich source of
color-space convolution filters when the convolution masks are given
broader support, i.e., they are no longer point-masks but have pixel
extent such as standard 3×3 pixel masks. Initial steps in the design
of these more complicated masks are given in the previous works of
the author with other collaborators [9], [10], [11], [12].

Fig. 1. Quaternion linear transforms of ‘Lena’ and color-cube test
images. The 1st and 2nd columns contain the transformed images,
and the 3rd column shows a color-cube scatter plot of both images’
contents. Transforms of the original image (Org.) are by rows: ro-
tation (Rot.), reflection (Ref.), axial-shear (aS), axial-dilation (aD),
radial-dilation (rD), and 2D-beam-shear (2bS).

5. AN APPLICATION

Since the quaternion convolution is linear, cascade and parallel con-
nections of the simpler affine maps can be used to construct more
complex filtering operations. For example, the simplest edge-detection
filter is achieved using opposing scale factors across a two-pixel
mask as

yk = m1pk + m2pk−1,

where m2 = −m1. The scale-factor pair, {m1, m2}, may be re-
placed with any pair of inverse affine maps

�
L, L−1� ∈

��
Rq, R

−1
q

�
,
�
Rμ, R−1

μ

�
,�

Sα, S−1
α

�
,
�
Dμ,α, D−1

μ,α

�
�

giving a generalized ‘edge-detector’

yk = L (pk) + L−1 (pk−1) .

In this fashion specific patterns of transition in an image may
be highlighted using a single convolution filter. This would find
usefulness, for example, in wind tunnel imagery where identifying
specific turbulence patterns is important in the design of efficient
aero-dynamic shapes and brute-force procedural search algorithms
of high resolution images is too time consuming or obscured by other
affects.

6. CONCLUSIONS

The hypercomplex convolution operator has significance for design-
ing color-image filters. The linear transforms presented embrace
many color-space operations such as reflections, rotations, dilations
and shears that map color images into color images. All of these
color-space operations can be performed with linear quaternion val-
ued equations. This is important so that convolution is index-space
shift invariant and color-space linear which preserve the mapping of
sinusoidal inputs to sinusoidal outputs. The class of hypercomplex
convolution filters is of great utility for this reason.
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