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ABSTRACT

In this work, we take a novel line of approaches to evolve
images. It is motivated by the total variation method, known
for its denoising and edge-preserving effect. Our approach
generalises the TVmethod by taking a generalLp norm of the
gradients instead of the L1 in the TV method. We generalise
this method in a series of first and second order derivatives
in terms of gauge coordinates. This method also incorporates
the well-known blurring by a Gaussian filter and the balanced
forward - backward diffusion.
The method and its properties are briefly discussed. The

practical results are visualised on a real-life image, showing
the expected behaviour. When a constraint is added that pe-
nalises the distance of the results to the input image, one can
vary the desired amount of blurring and denoising.

Index Terms— Image processing, Partial differential equa-
tions, Differential geometry, Nonlinear differential equations,
Image analysis

1. INTRODUCTION

Total variation is well-known for its edge preserving proper-
ties while smoothing the image (also known as cartooning)
[1]. It is obtained by minimizing the L1 norm of the norm
of the gradient squared and approaching the minimum by a
steepest decent method. When the L2 is minimized, one ob-
tains the heat equation (or Gaussian blurring [2]). In this
work, instead of taking the gradient descent equation of the
L2 norm of the gradients, the Lp norm is used, thus obtaining
so-called p-Laplacians. Firstly the concepts of gauge coordi-
nates, variational derivates, and p-Laplacians are discussed.
Secondly, it will be shown that the p-Laplace evolution equa-
tion is a PDE that can be simplified using gauge coordinates
and its properties are discussed in relation to image filtering.
Thirdly, both noise-constrained and unconstrained evolution
of this approach is visualized on the famous Lena.
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1.1. Gauge coordinates

An image can be thought of as a collection of curves with
equal value, the isophotes. Most isophotes are not self inter-
secting. At extrema an isophote reduces to a point, at sad-
dle points the isophote is self-intersecting. At the non-critical
points Gauge coordinates v, w can be chosen. Gauge coordi-
nates are locally set such, that the v direction is tangent to the
isophote and the w direction points in the direction of the gra-
dient vector [3, 4]. Consequently:Lv = 0,Lw =

√
L2

x + L2
y .

Of special interest in the remainder are the second order in-
variant structures:

Lvv =
L2

xLyy+L2

yLxx−2LxLyLxy

L2
x+L2

y

Lww =
L2

xLxx+L2

yLyy+2LxLyLxy

L2
x+L2

y

1.2. Minimizing methods

Consider an image L on the domain Ω. The first variation [5]
of the functionalE at L in the direction η is defined by

δE(L, η) =
∂

∂ε
E(L + εη) |ε=0 .

The variational derivative δE(L) of the functional E at L in
the direction η is defined by

δE(L, η) =

∫
Ω

δE(L) · η d Ω

with η ∈ C∞0 (Ω) a test function that is zero at the boundaries.
MinimizingLwith appropriate boundary conditions gives

the Euler -Lagrange equation δE = 0. A dynamical system
is obtained by the steepest decent approach Lt = −δE. So to
find the minimum of E(L) given an image L0 is to solve

Lt = −δE(L)
L(t = 0) = L0

2. P-LAPLACIANS

Consider in general the integral

E(L) =

∫
Ω

1

p
‖∇L‖p d Ω
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It is well-known as the p-Dirichlet energy integral with
accompanying p-Laplacian equation δE = 0, with

δE = −∇ ·
(
‖∇L‖p−2∇L

)
Alternatively, the energy can be written as

E(L) =
1

p

∫
Ω

Lp
w d Ω

Theorem: The variational derivative δE(L) can be written
as = −Lp−2

w ((p− 1)Lww + Lvv).
Proof

δE(L; η) = 1
p

∫
Ω

∂
∂ε‖∇L + ε∇η‖p |ε=0 d Ω

=
∫
Ω ‖∇L‖p−2∇L · ∇η d Ω

=
(
‖∇L‖p−2∇L

)
· η |∂Ω

−
∫
Ω

(
∇ ·

(
‖∇L‖p−2∇L

))
η d Ω

Since η = 0 on the boundary,
(
‖∇L‖2α−2∇L

)
·η |∂Ω≡ 0

and the Euler-Lagrange equation δE(L) = 0 equals

−
(
∇ ·

(
‖∇L‖2α−2∇L

))
= 0

The left hand side equals the well-known variational deriva-
tive of the p-Laplacian. An explicit expression is obtained by
applying the divergence operator to both terms, where gauge
coordinates are used:

−∇ ·
(
‖∇L‖p−2∇L

)
= −∇

(
‖∇L‖p−2

)
· ∇L− ‖∇ · L‖p−2 (∇ · ∇L)

= −
(
∇ · Lp−2

w

)
· ∇L− Lp−2

w �L

For the first part we have(
∇ · Lp−2

w

)
· ∇L = (p− 2)Lp−3

w ∇Lw · ∇L
= (p− 2)Lp−3

w

(
∇L ·H L−1

w

)
· ∇L

where H is the Hessian matrix. Recall (∇L ·H) · ∇L ≡
L2

wLww as given before. Therefore

(p− 2)Lp−3
w L−1

w L2
wLww = (p− 2)Lp−2

w Lww

and consequently we have

δE(L) = −
(
(p− 2)Lp−2

w Lww + Lp−2
w �L

)
.

Using the identity �L = Lww + Lvv this gives δE(L) =
−Lp−2

w ((p− 1)Lww + Lvv). QED
For p = 2 we have the heat equation:

L2−2
w ((2− 2)Lww +�L) = �L

Next, p = 1 gives the Total Variation flow :

L1−2
w ((1− 1)Lww + Lvv) = L−1

w Lvv = κ

In general, it gives a recipe for PDE-driven flow:

Lt = Lp−2
w ((p− 2)Lww +�L)

The case p → ∞ is known as the infinite Laplacian, de-
noted by �L∞. This term is defined as either Lww [6, 7, 8]
or L2

wLww [9]. It can be applied to image inpainting [10] and
shape metamorphism [11].
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Fig. 1. Values of k. From left to right k < 0, 0 < k < 1, 1 <
k < 4/3, all three in the complex plane, and 4/3 < k in the
real plane.

3. SOLVING THE P-LAPLACIAN PDE

To solve the p-Laplacian, it is assumed that the solution is
independent of direction, size, dimension, and orientation.
Therefore, t ∝ (x2 + y2)

p
2 , and the dimensionless variable

ξ =

(
a

(
x2 + y2

))p/2

t

is used (cf. the case p = 2: a Gaussian filter). Second, an
addition t dependency is assumed. This is inspired by the
observation that the solution for p = 2 contains the factor t−1.
One can say that the Gaussian that denotes the “observation”
is expressed in term of Lumen per square meter.
The source solution (or Barenblatt [12] solution [13]) for

the p-Laplacian equation with p > 2 and 1 < p < 2 can be
found by considering functions of the type

L(x, y; t, c) = ta
(
k

(
tq

√
x2 + y2

)m

+ c
)n

with a, q, m, n constants to be identified. The constant c can
be chosen such, that

∫
LdΩ = M , where is M is the total

intensity of the image,
∫
Ω L0dΩ.

The p-Laplacian equation for this function (omitted) give
a polynomial with terms in t, c − ξ, and 2c − ξ, with ξ =

k
(
tq

√
x2 + y2

)m

+ c, that equals zero. Collecting the pow-

ers of 2c − ξ terms gives n = p−1
p−2 , the t terms yield q =

−pa+2a−1
p . The c− ξ terms result in m = p

p−1 . The remain-
ing terms in p-Laplacian equation require k = (p−2)

p (−4 +

3p)
1

1−p . For k the following limits hold: limp→−∞ k =
1, limp→0 k = ∞, limp→1 |k| = e3, limp→4/3 k = −∞,
limp→2 k = 0, limp→∞ k = 1, Intermediate values of k are
shown in Figure 1, where the first three plots are in the com-
plex plane. One can see that for certain rational values of
p < 4/3 real solutions can be obtained, e.g. p = 5/4 gives
k = −768/5 and p = 1/2 gives k = −75/4.
With these values for a, q, m, n, and k, the p-Laplacian

filter L(x, y; t, c) equals

t
2

4−3p

(
c−

(p− 2)

p
(3p− 4)

1

1−p

(
t−

1

3p−4

√
x2 + y2

) p
p−1

) p−1

p−2

Real solutions depend on values of k, since t > 0 and c can
be taken sufficiently large.

V - 258



0 50 100 150 200

0.98

0.99

0.995

1

50 100 150 200

0.2

0.4

0.6

1.4 1.6 1.8 2.2 2.4 2.6

0.005

0.01

0.015

0.02

0

1

2

3

4

1.5

2

2.5

3

3.5

0

0.25

0.5

0.75

1

0

1

2

3

Fig. 2. p-Laplace filters for t = 1, c = 1, y = 0 and from left
to right x = .01, x = 1, x = 4 as a function of p. Most right:
filter in the x, t-plane. Note the part where data is missing due
to complex values.
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Fig. 3. p-Laplace filters for t = 1, c = 1 and from left to right
p = 4, p = 3, p = 11/6, p = 5/4.

The filters L yield real solutions for p > 2 and 4/3 < p <
2, as well as certain rational fractions. For p > 2, the solution
decreases to zero with increasing radius and either increases
again, or becomes complex. This is due to the fact that k > 0
for those values, so depending on the values of c, L becomes
complex-valued, see Figure 2 and 3.
Only for 4/3 < p < 2 the integral over L is real and

bounded.
For p = 2, the standard Gaussian filter is obtained. Ex-

pressing Lt = Lxx + Lyy using L(x, y; t) = f(ξ)tn gives

tn−1 (nf(ξ)− (4a + ξ)f ′(ξ)− 4aξf ′′(ξ)) = 0

The second term has as solution

f(ξ) = e−
ξ
4a

(
c1U

(
n + 1, 1,

ξ

4a

)
+ c2L−n−1

(
ξ

4a

))
.

Here U (a, b, z) is a confluent hypergeometric function and
La (z) is the Laguerre polynomial expression [14]. Then the
solution of the 2-Laplacian L(ξ, n) with ξ = x2+y2

4t becomes

e−ξtn
(
c1U (n + 1, 1, ξ) + c2L−(n+1) (ξ)

)
For n = −1,−2, . . . this reduces to

L(x, y; t,−1) = c1+c2

t e−ξ

L(x, y; t,−2) = (ξ−1)(c1−c2)
t2 e−ξ

L(x, y; t,−3) =
(2−4ξ+ξ2)(2c1+c2)

2t3 e−ξ

These expressions are the Gaussian filter and its derivatives
up to order t−1−n. Only the zeroth order yields a positive
filter.

3.1. Related work

Chen et al. [15] study the p-Laplacian for 1 ≤ p ≤ 2 with
p dependent on image (gradient) information. When consid-

Fig. 4. Lena image, noisy Lena, σ = 20

ering directional data, a p-Laplacian term enters when using
theory of harmonic maps in liquid crystals [16].
In the case of non-linear diffusion, often the choice

Lt = ∇ · (g(|∇L|)∇L)

is made. The function g(.) is chosen such, that it enhances the
edges (where |∇L| is large) and deblurs noisy (flat) regions
(where |∇L| is small). A classical example is the Perona-
Malik equation [17], where g(|∇L|2) = 1

1+|∇L|2/λ2 . Note
that by taking g(.) = 1, the Gaussian scale space is obtained.
A general class of diffusivities [18] is obtained by g(|∇L|)

= 1
|∇L|q . Then the diffusion becomesLt = ∇·(|∇L|−q∇L),

and by taking q = −p + 2 the p-Laplacian is obtained. For
q = 1 one obtains Total Variation flow, while the case q = 2,
known as balanced forward-backward diffusion, is also in-
vestigated [19]. Note that the latter case resembles p = 0,
the case where the energy functional would simplify to a con-
stant. The diffusion for p = 0 given above, is obtained by
minimising E(L) =

∫
Ω log Lw d Ω.

Kim [20] studied the PDE Lt = Lα
w∇ · (L

−ω−1
w ∇L), to-

gether with a distance penalty β(L − L0). This equals the
PDE Lα−ω−1

w (−ωLww + Lvv) . He called it the enhanced
TV model for α = ω + 1, i.e. when the Lw term vanishes.
This type of PDEs we discussed elsewhere.

4. RESULTS

An extra condition may occur in the presence of noise (as-
sume zero mean, variance σ): I =

∫
Ω

1
2 (f − f0)

2 d Ω = σ2,
where f0 is the initial image and f a denoised one.
The solution is obtained by the Euler Lagrange equation

δL + λδI = 0 with δL = −∇ ·
(
‖∇f‖p−2∇f

)
= 0, δI =

f−f0, and λ = <δL,δI>
<δI,δI> , where< δIδI >= 2σ2. The solu-

tion can be reached by an evolution determined by a steepest
decent evolution ft = −(δL + λδI) When we set λ = 0, an
unconstrained blurring process is obtained.
A forward Euler scheme is used to compute

ΔL = CD−i,j
(
‖D+

i,jf‖
p−2D+

i,jf
)

with D+
i f = f(i + 1, j) − f(i, j), D−i f = −f(i − 1, j) +

f(i, j) and similar for j. The constant is chosen such, that
the maximum update is less or equal to 10% of the maximal
image intensity to stabilize numerical computation for large p
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p � 0.75; time � 1000 p � 1.; time � 1000 p � 1.25; time � 1000 p � 1.5; time � 1000 p � 1.75; time � 1000

p � 2; time � 1000 p � 4; time � 1000 p � 10; time � 1000 p � 15; time � 1000 p � 20; time � 882

Fig. 5. Constrained Lena evolution

p � 0.75; time � 1000 p � 1.; time � 1000 p � 1.25; time � 1000 p � 1.5; time � 1000 p � 1.75; time � 1000

p � 2; time � 1000 p � 4; time � 1000 p � 10; time � 1000 p � 15; time � 1000 p � 20; time � 1000

Fig. 6. Unonstrained Lena evolution

values. The value for λ is computed in accordance with [1].
For the comparison of different values of p, 1000 iterations
are computed. Note that p-Laplacians are defined for 1 <
p < ∞, but p = .75 - cartooning with extra deblurring - gives
still stable results.
For the constrained evolution, convergence is obtained af-

ter approximately 400 iterations. Results are shown in Figure
5.
For the unconstrained evolution convergence is obviously

not obtained. Results are shown in Figure 6. For large values
of p, updates are tempered due to locally large values in the
norm of the gradient term. It appears that blurring is achieved
without affecting the noise that much.
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