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ABSTRACT 

 
The use of range data has become prominent in the field of 
computer vision.  Due to the irregular nature of range data 
that occurs with a number of sensors, feature extraction is a 
complex and challenging problem. Feature extraction 
techniques for range images are often based on scan line 
data approximations and hence do not employ exact data 
locations. We present a finite element based approach to the 
development of Laplacian operators that can be applied to 
both regularly or irregularly distributed range data.  We 
demonstrate that the feature maps generated using our 
approach on range data are much less susceptible to noise 
than the traditional use of Laplacian operators on intensity 
images. 
 
Index Terms— Range Images, Edge detection, Laplacian 
operators 
 

1. INTRODUCTION 

Range images are a special class of digital images in which 
each pixel value expresses the distance between a known 
reference frame and a visible point in the scene. A range 
image reproduces, therefore, an almost 3D representation of 
a scene [2]. Computer vision applications increasingly use 
range image data instead of, or in conjunction with, intensity 
image data [3]. Intensity images are of limited use in terms 
of estimation of surfaces, as pixel values are related to 
surface geometry only indirectly. Range images encode the 
position of surfaces directly, and therefore the shape of an 
object can be computed reasonably easily from range data. 

In intensity images, features tend to be defined as 
discontinuities in the image intensity due to changes in scene 
structure, and such discontinuities are often detected using 
either first or second order derivative operators.  When 
applying a second order derivative operator, a feature is 
determined as a zero-crossing, some examples of which are 
presented in [4,6,7].  The main problem encountered when 
using outputs of second order derivative operators is that the 
feature map is very susceptible to noise, as every zero-
crossing in the output is used to represent a feature point. 

The problem of edge detection when using range images 
is significantly different from that when using intensity 
images. There are two issues to consider when dealing with 

range data: the locational distribution of the data and the 
definition of an edge in a range image.  We firstly overcome 
the data distribution problem by generating Laplacian 
operators that are shape adaptive, and hence can be applied 
directly to irregularly distributed data.  With respect to 
defining an edge in a range image, this differs significantly 
from the case of an intensity image. Generally, in an 
intensity image, a change in intensity indicates an edge, the 
significance of which is determined by the gradient of the 
change.  However, in a range image, a continuous change in 
range data implies an object surface, and hence an edge is 
signified by a change in gradient where two object surfaces 
meet.  Hence the output generated when a Laplacian 
operator is applied has a significantly different meaning 
from the equivalent output generated using an intensity 
image and must be interpreted differently.  The 
complementarity of range and intensity data is valuable in 
resolving ambiguities, and issues of interpretation need to be 
considered in order to derive the benefits of fusing range 
data and intensity data.  

This paper presents a shape adaptive Laplacian operator 
for direct use on range data without any pre-processing 
requirements. An overview of the range image 
representation is presented in Section 2 with Section 3 
describing the finite element framework employed.  A brief 
overview of the 33×  shape adaptive Laplacian operator 
implementation is described in Section 4. In Section 5 we 
demonstrate how the output differs from that achieved using 
an intensity image and hence illustrate how to determine 
features in range images using Laplacian operators. 
Comparative results using the Laplacian operators are 
presented in Section 6, and these demonstrate that Laplacian 
operators are less susceptible to noise when used with range 
data than with intensity images.   
 

2. RANGE IMAGE REPRESENTATION 

We consider a range image to be represented by a spatially 
irregular sample of values of a continuous function u(x,y) of 
depth value on a domain Ω . Our operator design procedure 
is then based on the use of a quadrilateral mesh as illustrated 
in Figure 1 in which the nodes are the sample points. 
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With each node i in the mesh is associated a piecewise 
bilinear basis function ),( yxiφ which has the properties 

1),( =jji yxφ  if ji =  and 0),( =jji yxφ  if ji ≠ , where 

),( jj yx  are the co-ordinates of the nodal point j in the mesh. 

Thus ),( yxiφ is a "tent-shaped" function with support 

restricted to a small neighbourhood centred on node i 
consisting of only those elements that have node i as a 
vertex.  We then approximately represent the range image 

function u by a function ( )
=

=
N

j
jj yxUyxU

1

),(, φ  in which 

the parameters },...,{ 1 NUU  are mapped from the range 

image pixel values at the N irregularly located nodal points. 
Therefore, approximate image representation is a simple 
function (typically a low order polynomial) on each element 
and has the sampled range value Uj at node j. 

 
3. FINITE ELEMENT FRAMEWORK 

In order to obtain the weak form of the Laplacian operator, it 
is necessary that the image function ),( yxuu =  is once 

differentiable in the sense of belonging to the Hilbert space 

( )Ω1H , i.e., the integral ( )
Ω

Ω+∇ duu 22
 is finite, where 

u∇  is the vector ( )Tyuxu ∂∂∂∂ ,  [1].  The Laplacian term 

)( u∇⋅∇−  is multiplied by a test function 1Hv ∈  and the 

result is integrated on the domain Ω to give 

( )
Ω

Ω∇⋅∇−= vduuR )(                        (1) 

and this may be expanded to give  

 
ΩΩ

Ω∇⋅∇−Ω∇⋅∇= duvvduuR )()( .             (2) 

        
Ω∂Ω

Γ⋅∇−Ω∇⋅∇= dnuvvdu )(                (3) 

As the function space 1H  is infinite dimensional, we use the 
Galerkin formulation to obtain an approximate solution to a 

problem in a finite dimensional subspace )()( 1 Ω⊂Ω HS h  

rather than in the whole space )(1 ΩH .  Using the range 

image representation presented in Section 2, we may 

approximately represent the weak form of the Laplacian of 
the image by the functional  

 
Ω∂Ω

Γ⋅∇−Ω∇⋅∇= dnUdUUR iii )()( φφ        (4) 

for each function iφ  in the basis hS .  The boundary term in 

equation (4) may be disregarded if iφ  is restricted to a local 

neighbourhood and has zero value on the image boundary. If 

the test functions iφ  used in the weak form functional are 

from the same space as those used in the image 
approximation, this formulation corresponds to the Galerkin 
method in finite element analysis. However, we use an 
alternative approach whereby a finite-dimensional test space 

hTσ  is employed which differs from the image space hS ; 

such an approach corresponds to the Petrov-Galerkin finite 
element formulation.  This leads to the representation of the 
Laplacian by the functional  

Ω

Ω∇⋅∇=
σ

σσ ψ
i

iii dUUR )(            (5) 

where σψ i is a test function from the test space hTσ , with 

support restricted to a neighbourhood σ
iΩ  of node i.  In 

particular we choose σψ i  to be a Gaussian test function with 

support restricted to a local neighbourhood of elements 
surrounding node i. 
 

4. OPERATOR IMPLEMENTATION 

To illustrate the implementation of the 33×  Laplacian 

operator, we use a neighbourhood comprised of a set σ
iS  of 

four elements as illustrated in Figure 2.  A Gaussian basis 

function σψ i  is associated with the central node i and shares 

common support with nine neighbouring basis functions jφ  

(including iφ ).  Contributions to the operator )(URi
σ  

therefore need to be computed over four elements. 

 
Figure 2. Local 33×  operator neighbourhood 

Substituting the image representation 

( )
=

=
N

j
jj yxUyxU

1

),(, φ  into the weak form in (5) yields  

Figure 1. Sample of the irregularly distributed range image 
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where σ
ijK and σ

ijL are respectively entries in N×N global 

matrices σK  and σL given by 
Ω

∂
∂

∂
∂

=
σ

σ
σ ψφ

i

dxdy
xx

K ij
ij , 

i,j=1,..,N and 
Ω

∂
∂

∂
∂

=
σ

σ
σ ψφ

i

dxdy
yy

L ij
ij , i,j=1,..,N.  These 

integrals need to be computed only over the neighbourhood 
σ
iΩ , rather than the entire image domain Ω, since σψ i has 

support restricted to σ
iΩ . 

The adaptive capabilities of the operators are enabled by 
element mapping.  An irregular bilinear element is mapped 
onto a regular bilinear reference element, as illustrated in 
Figure 3; the corresponding co-ordinate transformation is 
defined as  

))1)(1()1)(1(                         

)1)(1()1)(1((
4

1

43
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ηξηξ

ηξηξ
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Figure 3.  (a) Cartesian reference system for Bilinear element em 
(b) Bilinear reference element. 

Construction of the operators on an irregular quadrilateral 
grid differs from that of image processing operators on a 
typically regular grid in that it is no longer appropriate to 
build explicitly an entire operator, as each operator 
throughout an irregular mesh may be different with respect 
to the operator neighbourhood shape.  When using an 
irregular grid, we work on an element-by-element basis, 
taking advantage of the flexibility offered by the finite 
element method as a means of adaptively changing the 
irregular operator shape to encompass the data available in 
any local neighbourhood.  

 

 

5. LAPLACIAN OUTPUT 

We demonstrate how the Laplacian output when using a 
range image differs from that when an intensity image is 
used.  Given the 1D signal in Figure 4(a), if this represented 
a ramp edge in an intensity image, the edge is distinguished 
in the Laplacian output as a zero-crossing as illustrated in 
Figure 4(b).  However, if the 1D signal in Figure 4(a) 
corresponds to a section of a range image, each line segment 
in the signal is equivalent to an object surface.  Therefore, 
each of the peaks in the Laplacian output, as illustrated in 
Figure 4b, represents an edge in a range image.  Hence, 
features in range images can be found readily by computing 
the absolute value of the Laplacian output together with 
simple thresholding to ensure that only the most significant 
peaks are representative of edges. Thus the use of Laplacian 
operators for feature extraction in range images is less 
susceptible to noise than in intensity images 
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Figure 4. (a) 1D signal; (b) Laplacian response 

6. RESULTS 

To evaluate performance we compare our proposed 
technique with that of Jiang et al [5]. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 5. Original range images: (a) from the Technical Arts 
scanner; (b),(c),(d) from the Minolta 700 range scanner 
(http://marathon.csee.usf.edu/range/DataBase.html) 
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The algorithm in [5] is a scan line approximation approach 
that scans the image vertically, horizontally and diagonally. 
We illustrate our technique using four real images (Figure 
5), but taken by two different range scanners: Technical Art 
scanner and OSU’s Minolta 700 range scanner. The images 
captured using the Technical Arts scanner have regularly 
distributed data and those captured by the Minolta 700 range 
scanner have irregularly captured data, thus demonstrating 
that the proposed technique is not range sensor specific. 
Edge maps for both the proposed method and that in [5] are 
illustrated in Figure 6. It should be noted that our proposed 
technique automatically finds all features whereas the 
technique in [5] does not automatically find the object 
boundary via the scan line approximation but instead 
assumes the boundary at the transition between data and no 
data in the range image. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

 
(g) 

 
(h) 

Figure 6. Edge map: (a), (c), (e), (g) edge maps generated using 
proposed technique; (b), (d), (f), (h) edge maps generated using 
scan line technique [5] 

 It can be seen from Figure 6 that our proposed technique 
provides edge maps that are comparable with those 
generated using the scan line approximation approach in [5].  
In some cases our technique provides additional edge detail 
(Figure 6(a)) or finer edges (Figure 6(e)).  It can also be seen 
from Figure 6 that the edge maps generated using the 
Laplacian operator are not as noisy as would typically be 
expected from the zero-crossing output when a Laplacian 
operator is applied to an intensity image. 
 

7. SUMMARY AND FUTURE WORK 

We have presented a shape adaptive 33×  Laplacian 
operator that can be used directly on range image data 
without the need for any image pre-processing.  Current 
results are promising when compared with the scan line 
approach of Jiang et al. [5]. Future work will involve 
generating irregular quadrilateral operators of varying size, 
not just 33× , to enable multi-scale feature extraction. Also, 
these techniques will be evaluated with respect to existing 
edge based segmentation algorithms with the overall goal of 
recognizing objects in range images in real-time. 
 
Acknowledgement 
This work was supported by the U.K Research Council 
EPSRC under Grant EP/C006283/1. We would like to thank 
Prof. Horst Bunke for providing us with the code for the 
scan line approximation algorithm in [5] 
 

8. REFERENCES 

[1] Becker, E.B., Carey, G.F., Oden, J.T., “Finite Elements: 
An Introduction.” Prentice Hall, London, 1981  
[2]Besl, P.J., “Active, optical range imaging sensors”, 
Machine Vision and Apps, Vol.1, pp. 127-152, 1988. 
[3] Dias, P., et al., “Combining Intensity and Range Images 
for 3D Modelling”, Proceedings of the IEEE International 
Conference on Image Processing (ICIP2003). 
[4] Haralick, R.M., “Zero crossing of second directional 
derivative edge operator”, in Proc. SPIE  Symp. Robot 
Vision, Vol.336, Washington, DC, pp.91-99, 1982 
[5] Jiang X. Y., Bunke H. “Edge detection in range image 
based on scan line approximation” Computer Vision and 
Image Understanding 73(2), 183-199, 1999 
[6] Kimmel R., and Bruckstein, A.M., “Regularized 
Laplacian Zero Crossings as Optimal Edge Integrators”, 
International Journal of Computer Vision 53(3), 225-243, 
2003 
[7] Marr D., Hildreth, E., “Theory of edge detection”, Proc. 
Roy. Soc., vol. B207, pp.187-217, 1980 
 

V - 264


