
AN ITERATIVE METHOD FOR VECTORMEDIAN FILTERING

Clay Spence and Craig Fancourt∗

Sarnoff Corporation
CN5300

Princeton, NJ 08543-5300
USA

ABSTRACT
We present a new iterative approach to computing a median
of a set of vectors. Like the standard approach, the proposed
method minimizes the sum of the distances from the data
points to the median. However, unlike the standard approach,
the resulting median vector is not restricted to be a member of
the data set. The proposed approach has several advantages
over the standard definition, such as fast convergence, com-
putational complexity that scales linearly with the number of
exemplars, and a result that is closer to the center in an in-
tuitive sense. As an example, we apply the method to color
image filtering.

Index Terms— Median filters, Vector median, Image color
analysis

1. INTRODUCTION

Due to their simplicity, robustness to outliers, and preser-
vation of sharp transitions, median filters are often used for
noise suppression, in spite of the existence of algorithms with
superior performance [1, 2, 3]. For vector data such as color
images, a vector version of the median can be defined by min-
imizing the sum of the (L2) distances from an unknown vec-
tor, vmed, to a given vector field, vi:

J =
∑

i

‖vi − vmed‖ (1)

Each term can be visualized as a cone with its vertex at a
data point. This is non-differentiable, so that conventional
optimization algorithms like Newton’s method will fail.
To avoid this problem, standard vector median algorithms

[4] choose a member of the data set that minimizes (1):

j∗ = arg min
j

∑
i

‖vi − vj‖,

vmed = vj∗ .

(2)

Unfortunately, this result is not necessarily a minimum of J .
Moreover, none of the data vectors may lie near an intuitive

∗Now at Merck Research Laboratories, Rahway, New Jersey.

center of the data. Consider three points at the corners of an
equilateral triangle. None is more central, but the standard
algorithm would choose one anyway. Furthermore, a direct
implementation of (2) can be expensive, especially for large
data sets.

1.1. Iterative Vector Median (IVM)

We propose an iterative approach to finding a vector median
that is the true minimum of J , by observing that the optimal
vector median satisfies

∂J

∂vmed

= −
∑

i

vi − vmed

‖vi − vmed‖
= 0. (3)

We now pretend that vmed in the numerator is different from
that in the denominator. Label the former vt+1

med and the latter
vt

med, then solve for v
t+1
med to get

vt+1
med =

∑
i

vi

‖vi−vt
med‖∑

i
1

‖vi−vt
med‖

(4)

where t is the iteration count. The algorithm begins with a
choice for v0

med, such as the mean of the vector field, and
then continually reapplies (4) until vmed converges, according
to some criterion such as sufficiently small change. We refer
to this as the iterative vector median or IVM algorithm, and
the same algorithm used for filtering as the iterative vector
median filter or IVMF algorithm.
The IVM algorithm is a generalization to vectors of a

known algorithm for finding the median of a set of scalar val-
ues [5]. There, the equivalent of (3) requires that the number
of data points less than the median should be equal to the
number that are greater. With vectors, (3) is the requirement
that the sum of the unit vectors from the median to each of
the data points is zero. In the scalar case, if there are an even
number of data points, there is an entire interval of values that
satisfy the criterion. By convention the center of the interval
is chosen as the median. In the vector case, the same degener-
acy can only occur if the data points are colinear, essentially
reducing to the scalar case. The formula (4) for the recursion

V - 2651-4244-1437-7/07/$20.00 ©2007 IEEE ICIP 2007

is the same in both cases, except that the vectors are replaced
with scalars, and the norm is replaced with the absolute value.
We will show that (1) only has exactly one global mini-

mum unless there are an even number of colinear data points.
In this case the set of global minima is a line segment between
two data points.
Furthermore, no matter where an iterate lies, one step of

(4) moves the iterate into the convex hull of the data points.
If an iterate comes sufficiently close to a minimum, the algo-
rithm (4) converges to it, almost always exponentially. Also,
all limit points are global minima. We have not yet proven
that (4) must converge, but have never observed otherwise.
Note that the IVM algorithm can return a different solu-

tion than (2). In fact, the value found iteratively can be a data
point, but often it is not. Consider again three data points at
the vertices of an equilateral triangle. Unlike algorithm (2),
the proposed algorithm will choose the center of the triangle.
For some applications this is an advantage, giving a solution
that is more nearly in the center of the data points.
Suppose now that the triangle is nearly flat, with one point

near the middle of the line joining the other two points. The
IVM algorithm will converge to the nearly-central point. The
gradient (3) will not be well-defined, but the nearly-central
data point is still a minimum of (1).
Furthermore convergence is fast. In a normals smooth-

ing application, convergence to within 1/10◦ is typically ob-
tained in less than five iterations for a three-dimensional vec-
tor field with nine members. Existing methods require nine
passes through the vector field, where each pass is compara-
ble to an iteration, in order to calculate the distance from each
vector to the rest of the field.
In fact, a naive implementation of (2) takes O(DN2) op-

erations, where D is the number of dimensions of the vectors
andN is the number of vectors. By contrast the IVM method
takes O(DNM) operations, where M is the number of iter-
ations. Given that convergence is usually exponential, M is
much less than N for large N .

2. ALGORITHM BEHAVIOR

2.1. Comparison with Newton’s method

Consider first the objective function (1) and its derivatives.
The individual terms of J are convex, so J itself is convex.
The gradient is given in (3). Clearly it is not defined at the
data points. If we define ri = ‖vi − vmed‖ and the unit
vectors ni = (vi−vmed)/ri, the gradient can be rewritten as

∂J

∂vmed

= −
∑

i

ni. (5)

Thus the condition that the gradient be zero at the median, if
it is not a data point, is that the unit vectors sum to zero.

The Hessian can be computed from (3), giving

H(vmed) =
∑

i

1
ri

(
I− ninT

i

)
. (6)

Note that each term of J can be imagined as a cone, so that the
curvature of that term is zero in the direction of its gradient
and positive in any other direction. The curvature at any non-
data point x is therefore positive in all directions unless all
data points and x are colinear.
Furthermore, the iteration (4) is a form of gradient de-

scent. If we define a modified Hessian, H̃ = I
∑

i 1/ri, re-
lated to the Hessian by dropping the second term in (6), we
can be rewrite (4) as

vt+1
med − vt

med = −H̃−1 ∂J

∂vmed

. (7)

In particular each step is parallel to the gradient and downhill.
It is interesting that using the full Hessian, i.e., Newton’s

method, can cause divergence. For example, suppose that an
iterate is far outside the convex hull around the data. The full
Hessian is ill-conditioned, since J increases linearly as we
move away from the data. A step of Newton’s method would
move the iterate far beyond the data points.
By contrast, the IVM algorithm behaves well. To see this,

note that another way to represent a step is

vt+1
med − vt

med = H(r)〈n〉, (8)

where H(.) is the harmonic mean, and 〈.〉 is the arithmetic
mean. With vt

med far from the data points, 〈n〉 points toward
the cloud and its magnitude is nearly one, while H(r) is be-
tween the smallest and largest distance to a data point. Thus
one step moves the estimate close to the cloud of data points.
In fact the IVM algorithm moves any point into the con-

vex hull of the data. Write the sums as integrals over space,
with point density ρ(x). Choose coordinates with origin at
the current iterate and arbitrary axes. To integrate out the co-
ordinates besides x1, let σ(x1) =

∫
dD−1x ρ(x)

/‖x‖.We get
H(r) =

[∫
dDx

ρ(x)
‖x‖

]−1

=
[∫

dx1σ(x1)
]−1

and
(9)

〈n〉1 =
∫

dDx
ρ(x)
‖x‖ x =

∫
dx1 x1σ(x1). (10)

The IVM algorithm steps along the chosen direction by

(vt+1
med − vt

med)1 =
∫

dx1 x1σ(x1)∫
dx1σ(x1)

. (11)

Since σ(x1) is non-negative and zero outside the data, this
has a value within the extremes of x1 in the data set, so the
new iterate lies within a slab that tightly bounds the data in the

V - 266

chosen direction. Since this is true for any choice of direction,
the new iterate lies within the intersection of all such slabs,
which is the convex hull of the data.
It is more difficult to analyze the behavior inside the con-

vex hull, except for some special cases. In the following sec-
tion we discuss the behavior near data points, and fixed points
that are not data points.

2.2. Convergence

Here we discuss the convergence properties of the IVM al-
gorithm. The most basic property is that J is convex, which
implies that all minima are global, and the set of minima is
convex. We now determine the number of minima, and show
that the IVM algorithm converges to one of them.
If the data points are not colinear, the Hessian (6) is posi-

tive definite everywhere except at data points, where it is not
defined. This is because the individual terms are positive-
semidefinite, and with non-colinear points the null directions
of different terms are not the same. Since J is convex, it is not
possible to have more than one minimum in the non-colinear
case. Even in the colinear case, it is easy to see that there is
only one minimum if the number of data points is odd. With
an even number of data points, the set of global minima is a
closed line segent with two data points as endpoints.
In the following, we assume that the data points are not

colinear. Likewise, for subsets of data points, we assume that
the iterate is not colinear with the points in the subset. Under
these assumptions the Hessian is always positive-definite.
Now consider an iterate near a data point. Let this be

vt
med = vj + ε, for some j, where ε is a small vector. We can
show that the iteration gives

vt+1
med = vj + ε

∑
i �=j

nij + O(ε2), (12)

where nij = (vi − vj)
/‖vi − vj‖ and ε = ‖ε‖. Thus the

new distance from vj is

‖vt+1
med − vj‖ = ε

∥∥∥∑
i �=j

nij

∥∥∥ + O(ε2). (13)

If ‖∑
i �=j nij‖ is less than one, the distance from vj de-

creases, so vj is an attractor, and convergence to it is expo-
nential. If ‖∑

i �=j nij‖ is greater than one, vj is a repellor.
In the rare case that ‖∑

i �=j nij‖ is exactly one, we can
still determine the behavior. If we assume that vj is not
colinear with the other data points, the Hessian near vj is
positive-definite. The gradient at vj due to the other points
(−∑

i �=j nij) has magnitude one, and the gradient due to vj

has magnitude one, so the total gradient of J approaches zero
as we approach vj from the direction of

∑
i �=j nij . How-

ever, because the Hessian is positive-definite the total gradient
points toward vj and is not zero. Because each step is pro-
portional to the negative gradient, the iteration moves toward
vj . We can show that this converges as 1/t.

Fig. 1. Filtering a noisy image: (top) original corrupted with
speckle (multiplicative) noise, level = 0.20; (middle) result of
the IVMF; (bottom) result of the standard vector median filter.
Both median filter results used 5x5 windows.

V - 267

Fig. 2. IVMF MSE divided by standard vector median MSE
versus noise level for three noise types: (top) Gaussian; (mid-
dle) salt-and-pepper; (bottom) speckle. The three curves in
each graph are for window sizes of 3x3, 5x5, and 7x7.

Consider now a non-data fixed point v∗
med. Again, let

vt
med = v∗

med + ε, and expand the formula for the iteration in
powers of ε. We can show from this that

‖vt+1
med − v∗

med‖ ≤ ε + O(ε2). (14)

Equality holds only if the points are colinear with ε. Thus any
non-data fixed point is an attractor, as long as the data points
are not colinear. Furthermore, convergence is exponential

3. EXAMPLE

The IVMF can be used to smooth any vector field. We have
applied it to smoothing 3D LIDAR point clouds and surface
normals. Here, we apply it to color images. The objective
function is J =

∑
x,y∈R ‖ c(x, y)−cmed(x, y)‖,where c(x, y)

is a vector representing the color of the pixel at image coordi-
nates (x, y) within the neighborhood R. Again, the IVMF is
applied over local regions, in this case in the image plane.
We compare the IVMF with standard vector median filter-

ing on a 256x256 color Lena image corrupted with three types
of noise: Gaussian, salt-and-pepper (shot), and multiplica-
tive (speckle), at a range of noise levels. Example results are
shown in Figure 1, and plots of the ratio of the mean-squared
error (MSE) of the IVMF to that of the standard vector me-
dian filter are shown in Figure 2. The noise types and values
of the noise levels correspond to arguments to the Matlab R©
function imnoise. In most cases the IVMF is significantly
better, except for salt-and-pepper noise and large filter win-
dows. These results suggest that the standard vector median
can be better for impulse noise, whereas the IVMF is better
for other types. Like the standard approach, the IVMF is ro-
bust to outliers and tends to preserve edges.

4. REFERENCES

[1] J.T. Astola and E.R. Dougherty, Nonlinear Filters for Im-
age Processing, SPIE Optical Engineering Press, 1999.

[2] J.K. Romberg, Hyeokho Choi, and R.G. Baraniuk,
“Bayesian tree-structured image modeling using wavelet-
domain hidden Markov models,” IEEE Trans. Image
Proc., vol. 10, no. 7, pp. 1056–1068, July 2001.

[3] J. Portilla, V. Strela, M.J. Wainwright, and E.P. Simon-
celli, “Image denoising using scale mixtures of Gaus-
sians in the wavelet domain,” IEEE Trans. Image Proc.,
vol. 12, no. 11, pp. 1338–1351, Nov. 2003.

[4] J. Astola, P. Haavisto, and Y. Neuvo, “Vector median
filters,” Proceedings of the IEEE, vol. 78, no. 4, pp. 678–
689, April 1990.

[5] W.H. Press, B.P. Flannery, S.A. Teukolsky, and W.T. Vet-
terling, Numerical Recipes in C, Cambridge University
Press, 1988.

V - 268

