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ABSTRACT
 
The Teager-Kaiser operator is a discrete version of Teager’s 
energy operator, advanced about 16 years ago. It is a filter of the 
moving window type and is commonly used as an estimator of the 
local energy contents of a signal; it is also used as a contrast 
enhancer of gray level images. We state some properties of a 2D 
version of the operator and its responses to common images. We 
characterize some of its root and preconstant images, and consider 
the case of separable images. 
 
Index Terms— Image enhancement, nonlinear filters. 
 

1. INTRODUCTION 
 
The Teager-Kaiser operator is a discrete nonlinear filter of the 
moving-window type. Nonlinear filters solve problems that are 
unsolvable by the use of convolution filters alone; thus, the median 
filter preserves sustained edges while eliminating isolated spikes, 
both types of signal having overlapping spectra. The one 
dimensional (1D) Teager-Kaiser operator [1] appeared as a 
discrete version of the Teager energy operator which was proposed 
as an estimator of the energy spent by a sinusoidal oscillator.  The 
1D Teager-Kaiser operator relates each input signal x RZ with the 
corresponding output signal y RZ via 
 

 2
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Constant and exponential signals are pre-null signals of the 
Teager-Kaiser operator; that is, they produce the zero signal [3]. 
Sinusoidal, hyperbolic and linear signals produce constant signals 
and we call them preconstant signals for the operator [5]. The 
signals which pass unaltered through the operator are called root 
signals for the operator. 

The two dimensional (2D) version of the Teager-Kaiser 
operator (TK for short) has been used as a component of a contrast 
enhancer [2]. We study some of its properties and responses to 
common images; this gives some light about the behavior of the 
operator. We study specific cases of root, preconstant and pre-null 
images of the TK operator. 

In Section 2, we give an initial characterization of the TK 
operator in terms of its responses to particular signals and briefly 
discuss some of its properties. In Section 3 we consider the pre-
constant signals of the operator and, as a particular case, the pre-
null signals. In Section 4 we consider the root images of the 
operator. In Section 5 we study the response of the operator to 
separable images. The paper is concluded in Section 6.  

2. DEFINITION AND RESPONSES TO COMMON 
SIGNALS

 
Let an image be a 2D real signal, i.e. an element of RZ×Z. The 
Two-Dimensional Teager-Kaiser operator is the function TK: RZ×Z 

RZ×Z that maps images into images via  
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where m and n stand for rows and columns, respectively. For the 
visualization of images, we paint a zero with the medium gray, 
negative values with darker grays and positive values with lighter 
grays. We also write TK(x)={2x2

m,n}-{xm,n-1}{xm,n+1}-{xm-1,n}×   
{xm+1,n}; and, with the convention that k,lam,n means am-k,n-l (two 
pre-sub-indexes indicating a shift in rows and columns) and the 
understanding that the product of images is pointwise, we write, in 
compact form TK(x) = 2x2 - (0,1x)(0,-1x) - (1,0x)(-1,0x). Clearly, TK= 
TKR+TKC, where TKR and TKC, respectively, are the 1D 
Teager-Kaiser operators applied by columns and by rows, 
respectively, i.e.: 

))(( )(TKR 1,01,0
2 xxxx  

))(( )(TKC 0,10,1
2 xxxx  
 

The TK operator does not obey neither superposition nor 
homogeneity; nevertheless, it obeys what we call square 
homogeneity. We say that an operator O is square homogeneous if, 
for each constant c, and each signal s, O(cs)=c2O(s). 
 
2.1. Properties 
 
Response to a sum of images: if x and y are images, then 
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In particular, if y is a constant image of value d, the output is 
 
 )( 010110104  )TK( )TK( xxxx  xydxdx ,,,,  3( )  
 
Response to a product of images: if x and y are images, then 

))TKC(TKC())TKR(TKR()TK()TK()TK( 22 yxyxxyyxxy
 

Invariance: let {ym,n}=TK({xm,n}), then }{}{TK ,, )( nmnm yx , 

}{})TK({ ,, nmnm yx  and }{}{TK ,, )( nmnm yx . 
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2.2. Responses to common images 
 
Constant image: the response is the null image. 

Linear image: the response to an image { m+ n+ }, where , 
 and  are constants, is the constant image { 2+ 2}. 

Impulse response: The response to a 2D discrete impulse { m,n}  
is the image 2  (the 2D discrete impulse is given by m,n=1 if 
m=n=0 and m,n=0  otherwise.)  

Sinusoidal responses: The response to an image 
{sin( 1m+ 2n+ )} is the constant image {sin2

1+sin2
2}.   Let 

x={sin( 1m+ 1)} and z={sin( 2n+ 2)}, then the response to the 
image xz is the image x2sin2

2 + z2sin2
1. Finally, the response to 

the linear combination Ax+Bz is the image 2(2-cos 1-cos 2)× 
ABxz+A2sin2

1+B2sin2
2, so the response of the operator to a sum 

of sinusoidal images is their scaled product on a DC level. 
Exponential responses: The images {e mn} and {e m+ n} are 

pre-null images. 
Hyperbolic response: The response to the images 

{sinh( m+ n+ )} and {cosh( m+ n+ )}  are the constants images 
0.5[cosh(2 )+cosh(2 )-2] and 0.5[2-cosh(2 )-cosh(2 )]. 
 

3. PRECONSTANT AND PRE-NULL IMAGES 

An image that generates a constant output when it is applied to the 
TK operator is called a preconstant image, if the constant is zero 
we have a pre-null image.  

In [5], the preconstant and pre-null signals of the 1D TK 
operator were wholly characterized. They were classified into two 
groups as determinate and non-determinate signals; all pre-null 
signals are determinate. The determinate signals are governed by 
rational difference equations and solve linear difference equations.  

We have found that it is possible to get a preconstant image 
starting from a determinate preconstant signal. Let x be a 1D 
preconstant signal, we show below that we obtain a preconstant 
image by doing a linear combination of the arguments m and n of 
the image in the 1D argument of  x. 

Lemma 1. If  {xn}  is a determinate preconstant 1D signal then 
{x n+ }, with  and  integer constants, is a preconstant signal. 

Proof.  Since the 1D TK operator is invariant it is enough to 
demonstrate that {x n} is a preconstant signal. Since {xn} is a 
determinate preconstant signal, for some real   0 it satisfies [5] 
 

 011 nnn xBxx  4( )  
 
The signal {x n} is preconstant if for some real ( ) (  is a real 
function of ) the signal is a solution of the equation x (n+1)+ 
( )x n + x (n-1) = 0. More generally, we will check using induction 

that xn+ + ( )xn+ xn-  = 0. For =1 we have (1)= . For =2, we 
can express xn+1 and xn-1 using shifted versions of (4) and we have 
xn+2 + (2- 2)xn + xn-2 = 0. The signal {x2n}, is preconstant with 
(2)=2- 2. Now if {x( -1)n} is preconstant ( 3), so it obeys xn+( -1) 

+ ( -1)xn + xn-( -1) = 0. Using (4), we rewrite the last equation as 
 

0)1( 22 nnnnn xxxxx  
 

and knowing that xn+( -2) + xn-( -2) = - ( -2)xn we get xn+  + ( )xn + 
xn-  = 0 where ( ) = -( ( -2) + ( -1)).                                        

Theorem 1. If {xn} is a determinate preconstant signal of the 1D 
TK operator then {xam+bn}, with a and b integer constants, is a 
preconstant image of the TK operator. 

Proof. TK({xam+bn})=TKR({xam+bn})+TKC({xam+bn}). Since am 
is constant for each row and the signal {xbn} is a 1D preconstant 
signal, the image TKR({xam+bn}) is a constant image. In a similar 
way, since bn is constant for each column and {xam} is   a 1D 
preconstant signal, the image TKC({xam+bn}) is constant. Thus we 
get that the image {xam+bn} is a preconstant image.           

In [5], the determinate preconstant signals were classified into 
three types from which we can get three types of preconstant 
images which we show below with their respective outputs. 
 
For 1 2 1 2{ }m n m nx A B  

1 2
1 1 2 2TK( )  ( ) ( ){ [ ]}x AB  

For { }x Am Bn C  
2 2TK( ) { }x A B  

For 1 2sin{ ( )}x A m n  
2 2 2

1 2TK sin sin( ) { ( )}x A  
 
Since each preconstant image {xm,n} can be obtained from a 
determinate preconstant signal {yn} by writting {xm,n}={yam+bn}, 
where a,b Z, for a fixed row m' of the image, {xm',n}={ybn+ am'} is 
a preconstant signal with parameters = R(b) and = R(b).  
Similarly, for a column n' of the image, {xm,n'}={y am+bn'} is a 
preconstant signal with parameters = C(a) and = C(a). Thus, 
for particular values of a and b, the rows and columns of the image 
{xm,n} are preconstant signals with constant parameters:  R  and  R 
for rows, and  C  and  C for columns. Consequently, the constant 
output of the image {xm,n} is given by R + C . 
 

4. ROOT IMAGES 
 
From (2), the starting point for the study of the root images of the 
TK operator is the equation 
 

 
nmnmnmnmnmnm xxxxxx ,1,11,1,

2
,, 2  5( )  

 
The set of solutions of this nonlinear difference equation is the set 
of the root images of the TK operator. 
 
4.1. Determinate root images 
 

Each determinate root signal of the 1D operator is characterized 
by a parameter . If   -2, the signal is on a DC level and 
becomes preconstant signal when the DC level is removed [4]. 
Therefore every determinate root signal can be obtained from a 
determinate preconstant signal. On the other hand, a preconstant 
signal, with parameters   -2 and , becomes a root signal when a 
1/(2+ ) DC level is added. 

Theorem 2. Let {xm,n} be a preconstant image such that  
TK(x)=1/(4+ R+ C) and let d = 1/(4+ R+ C) be a DC level, so 
the image x+d is a root image of the TK operator. 

Proof. The output of the TK operator to an image plus a DC 
level is shown in (3). The image {xm,n} becomes a root if d = 
TK(x) and x = d(4x - 0,-1x - 0,1x - -1,0x - 1,0x). Let suppose that {xm,n} 
is a  preconstant image so it obeys xm,n+1 + R xm,n + xm,n-1 = 0 and 
xm+1,n + C xm,n + xm-1,n = 0. Hence we can write R x = - 0,-1x - 0,1x 
and C x = - -1,0x - 1,0x, and replacing it in (3) we get TK(x + d) = 
TK(x) + dx(4 + R + C). Clearly TK(x + d) = x + d if 
TK(x)=1/(4+ R+ C) and d = 1/(4+ R+ C).                                 
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 (a)                            (b)                            (c) 

 
Fig. 1. Contrast Modifying by adding a DC level d before filtering. 

(a) Original sinusoid image, (b) output gotten for 0 < d < dR and  
(c) output obtained for d > dR. 

 
Therefore, from each preconstant that obeys  
 

 1 4/( )R C R C  6( )  
 

we can obtain a root image by adding a 1/(4+ R+ C) DC level.  
The preconstant image x={A 1

m
2
n+ B 1

-m
2
-n} has R = -( 2 + 

2
-1), C = -( 1 + 1

-1), R = -AB ( 2 - 2
-1)2 and C = - AB ( 1 - 1

-1)2, 
then the image x={A 1

m
2
n+ B 1

-m
2
-n + 1/(4+ R+ C)} is a root 

image for each A and B that satisfies (6). 
The preconstant image x={Am+ Bn}, for A,B  0, has R =  C 

= 2, R = B2 and C =A2, then the image x = {Am+Bn+1/8} is a 
root image if A2 + B2 = 1/8. 

The preconstant image x = {Asin( 1m+ 2n+ )} has R = -2 
cos 2, C = -2cos 1, R = A2sin2

2 and C = A2sin2
1, then the 

image x = {Asin( 1m+ 2n+ )+1/(4+ R+ C)} is a root image for 
each A, 1 and 2 that satisfies (6); we further analyze this case 
below. 

 
4.2. Sinusoid on a DC level 

A 1D sinusoidal signal is preconstant for the TK operator [5]. We 
showed above that a sinusoidal image generates a constant output. 
Let x={Asin( 1m+ 2n+ )+d}, where d is a real constant, be an 
image who is applied to the TK operator, then we get the output 
 

2 2 2
1 2 1 2 1 22 sin 2 cos cos sin sin{ ( )( ) ( )}Ad m n A  

 
where we know that R = - 2cos 2, C = - 2cos 1. If the amplitude 
obeys A2=d/(sin2

1+sin2
2), then we can rewrite the output as 

 
1 2sin( 4{ )( ) }R CAd m n d  

 
Finally if d=1/(4+ R + C) the condition (6) is satisfied and we get 
a root image. The value of d controls the output of the operator 
when the image x is applied. For d = 0 the image generates a 
constant output, while for an appropriate value of d, which we call 
dR, the image becomes a root. 

For d  0 and d  dR the output corresponds to a scaled version 
of x on a DC level. For values of d between 0 and dR, the operator 
reduce the contrast of the original image, as we shown in Fig. (b).  
On the other hand, for values of d greater than dR, the operator 
enhances the contrast of the image. Examples for two values of d 
are shown in Fig. 1. 

In Fig. 2 we show the response of the operator to an image 
composed of 4 segments; 3 of them are taken from preconstant 
images and the other belongs to a root image. 

 

       
(a)                                         (b) 

Fig. 2. Response (b) of the TK operator to an image (a) with root 
and preconstant image segments. 

5. SEPARABLE IMAGES 

We consider separable images as a important step in the study of 
the TK operator since they are relatively easier to analyze.

5.1. Response to separable images 

An image is a separable image if it can be expressed as a certain 
product of 1D signals, i.e. x is a separable image if each pixel of x 
can be written as xm,n=umvn, where u,v RZ; we call u and v factor 
signals and we write u*v={umvn}. 

The response to a separable image can be written as 
 

 2
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where TK1D is the 1D TK operator.   
 
5.2. Separable root images 

A separable root image satisfies 
 

 2
1D1D
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If u is a pre-null signal of the 1D TK operator, then (8) becomes  
u v=u2 TK1D(v). It can be checked that if w=u v and z=x y, 
and if w=z then v=k1y y u=k2x, where k1 and k2 are numbers that 
obey k1k2=1, thus u2=k1u and TK1D(v)=k2v. Since  u is  pre-null it  
has to  be a  constant signal of value k1. On the other hand, v  has 
to be an eigensignal (i.e. the output is a scaled version of the 
output) with scale factor or eigenvalue k=k2. Therefore a root 
separable image can be gotten in terms of  from a k-eigensignal 
and a constant signal of value 1/k.            

Now, assume that u and v are not pre-null signals. If w=u v 
and z=x y are separable images, and if w+z is separable then exist 
k R such that v=ky or u=kx. Therefore in (8) is required that 
TK1D(u)=ku2 or TK1D(v)=kv2. Assume TK1D(u)=ku2 then u v= 
u2 [TK1D(v)+kv2] and ku=u2, thus u has to be a constant which 
contradicts our choose of u. In a similar way if TK1D(v)=kv2 so v is 
pre-null. We conclude that the only root separable images are root 
signals, copied by rows or columns. 
 
5.3. Preconstant separable images 

A preconstant separable image with constant  satisfies 
 

 2
1D1D
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   (a)                                              (b) 

Fig. 5. A preconstant separable image. (a) A preconstant signal 
and (b) the image generated copying the signal by rows. 
 
where K is a constant image of value 0. If u is a pre-null signal, 
the for each row m (9) becomes { }=u2

mTK1D(v). Therefore u has 
to be a constant signal of value k and v has to be a preconstant 
signal with constant 1/k. 

 
Now, assume that u and v are not pre-null signals. For each row 

we have a constant signal of value , so subtracting a pair of 
equations gotten from (7) for two rows i and j we get 
 

 ))((TK])(TK)([TK 22
1D1D1D

2
jiji uuvuuv  10( )  

 
If TK1D(u) and u are constant signals, (10) is reached but u 
contradicts its definition. If only TK1D(u) is constant (10) is not 
reached because v can not be pre-null. Finally if TK1D(u) and u are 
not constant signals then exist k R such that TK1D(v)=kv2 and for 
each row m of the image we have { }=v2[ku2

m+TK1D(u)m]. Thus v2 

has to be pre-null which contradicts the definition of v as not pre-
null. Therefore preconstant separable images are preconstant 
signals copied by row or columns, as it is shown in Fig. 5. 
 
5.4. Pre-null separable images 

A pre-null images satisfies 
 

 2
1D1D
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where  is the null image. Clearly if u or v is the null signal , 
u v = ; we don’t consider this case. If u is a pre-null signal then 
for each column m we have =u2

mTK1D(v), so v has to be pre-null 
signal too. Therefore each separable image with pre-null factor 
signals is a pre-null image.  

In Fig. 6(a) an example of pre-null separable image is shown, 
where the factor signals are an exponential signal and a binary 
signal which alternates its sign. 

If u and v are not pre-null signals then for each row m we have 
TK1D(u)mv2=-u2

mTK1D(v). Since u is not pre-null has to exist k1 R  
such that TK1D(v)=k1v2. Likely, for each column we followed 
TK1D(u)=k2u2  for some k2 R.  From (11) we get =k1(u2 v2) + 
k2(u2 v2) which is true if and only if k1 = -k2. Therefore the factor 
signals who satisfy um+1=um(1+k)/um-1 and um+1=um(1+k)/um-1, for 
some real k, generate a pre-null separable image. 
 

6. CONCLUSIONS 
 
We have derived the responses of the operator to common images; 
this gives some light about the behavior of the operator. We have 
found roots and preconstant images that are derived from root and 
preconstant signals of the 1D TK operator. Some of these 
preconstant images become a root when an appropriate DC level is 
added and they were fully characterized. 

                
(a)                                            (b) 

Fig. 6. Pre-null images. (a) A separable image and (b) an 
exponential image. 

 
All root and preconstant images found include negative values; the 
operator does not work well as a contrast enhancer for images with 
negative values. When a sinusoidal texture on a DC level is 
applied to the operator, the texture frequency and DC level 
determine the amount of amplification/attenuation of the output 
texture and of the output new DC level.  

The particular case of separable images has been studied and 
we have characterized the root and preconstant separable images; 
they are root and preconstant 1D signals, copied by rows or by 
columns. Nevertheless not all root and preconstant images of the 
TK operator are separable or have a relationship with the 1D TK 
operator, as it was found in [7], so other strategies have to be used 
to solve wholly this problem.  
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