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ABSTRACT

This paper presents a generalized theoretical framework for
designing accurate steerable filters for orientation estimation.
We derive the necessary properties of orientation estimation
filters in their most general form. Based on our framework,
we implemented a highly angular-specific filter. Numerical
experiments show the enhanced accuracy of our proposed fil-
ter as compared with existing filters.

1. INTRODUCTION

Orientation estimation is an important step in many image
processing algorithms. It aims to find a direction r of local
constancy of a given signal. Typically, the classical approach
is used where a particular direction r̂ is found by calculating
an approximation of the first derivative in the direction r̂ on a
discrete grid [1, 2, 3, 4, 5, 6], and orienting the filter respon-
sible for calculating the derivative so that its output vanishes.
This derivative condition leads to the well known brightness
constancy constraint equation (BCCE), and the associated fil-
tering task includes translation of the discrete signal into the
continuous domain through pre-filtering and applying a direc-
tional derivative to the obtained continuous signal. The set of
filters used in this process belongs to the class of nullifying fil-
ters, i.e., parametric filters whose response is zero only if the
values of the parameters reach the required values. Simoncelli
showed that the BCCE can be most efficiently implemented
using steerable filters [7, 8]. Steerable filters are based on the
idea of composing a filter from a linear combination of basis
filters independent of r̂ such that any rotation of the filter can
be obtained by an appropriate linear combination of the basis
filters. This paper addresses the issue of creating filters using
the recently proposed extended BCCE [9, 10] by formulating
a general framework for design of orientation selective filters.
We determine the necessary and desired features of a filter
for orientation estimation, design a highly angle-specific fil-
ter, and finally show that our exemplar filter performs better
than filters that are based on first order derivative approxima-
tions.

2. THEORETICAL BACKGROUND

The common goal of all differential-based orientation estima-
tion techniques is to find a signal characteristic being con-
served in a certain direction. The direction of constancy r can
be related to the signal s through directional derivatives of s.
Let the signal s be constant in direction r in some vicinity
of point x, s(x + ur) − s(x) = 0 for some |u| < R. The
above, clearly non-differential, condition can be expanded in
a Taylor series

u
ds

dr
+

u2

2
d2s

dr2
+

u3

3!
d3s

dr3
+ . . . = 0, (1)

which is equivalent to the generalized BCCE proposed by
Mester [9, 10] with a particular choice of coefficients. This
shows that the non-derivative approaches are necessarily equiv-
alent to the proposed generalized BCCE. Since we assume the
signal to be constant within some neighborhood, each term in
(1) equals zero. Thus, each linear combination of derivative
terms can be used to relate the direction of constancy to the
signal. However, not every combination may be equally ef-
ficient in practice. The choice of weights obtained through
Taylor expansion assures that the weights are consistent with
the shape of the signal s.
Let us now consider (1) in the Fourier domain. Each term

has a nullifying plane in this domain, that is, the Fourier trans-
form of each term of (1) is zero on a plane perpendicular to
the direction r. This is the fundamental property of all orien-
tation estimation operators and follows from the fact that the
entire energy of a signal, which is constant in direction r, is
concentrated on the plane. Equation (1) can be computed via
a linear filter h(x; r) parameterized by a unit vector r. The
response of the filter h(x; r) when applied to a signal s(x) is
defined as

T (r) = h(x; r) ∗ s(x), (2)
and henceforth called the response function. For the required
direction of constancy the response is zero; therefore, we may
write the governing equation

T (r) = h(x; r) ∗ s(x) = 0, (3)
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where r is usually parameterized by angular coordinates of
the unit vector r. In the Fourier domain, equation (2) becomes
T (r) = H(f ; r)S(f) with H = F {h} and S = F {s} being
the Fourier transforms of the filter and signal, respectively. If
the signal s is a planar wave s(x) = sin(k · r), the response
function can be simplified to T (r) = H(kr; r) where k = |k|
is the magnitude of the wave vector k1. Hence, the response
function of any filter to a signal of frequency k is equivalent
to the angular behavior of the Fourier transform of the filter
evaluated at distance k from the origin in the frequency do-
main. The response function should only be zero for r being
the direction of constancy of the signal. It is imperative there-
fore, to ensure that the frequency domain form of the filterH
is zero only on its nullifying plane, as spurious zeroes would
result in solutions unrelated to the sought for direction.

Following [11], we further restrict the possible set of fil-
ters to those separable in the frequency domain. Thus, a
general filter satisfying the above constraints can be written
as H(f ; r) = F (ρ)G(ψ) with F (ρ) being the radial part
(ρ ≡ |f |), and G(ψ) the angular part (ψ is the generalized
angular coordinate vector dependent on both f and r). From
this general form we infer two significant observations. First,
the angular part G(ψ) is equivalent to the response function
T (r), and it solely determines the solutions of the governing
equation (3). Conversely, the radial part F (ρ) describes the
response of the filter to a signal of frequency ρ and allows one
to incorporate previous knowledge about the signal (signal-
to-noise ratio for different frequencies, typical frequencies of
sought-for features of the signal, etc.) into the designed filter
to further enhance its performance.

In order to ensure that our filter is steerable, we need to
decompose it into a set of basis filters independent of the
parameter r. First of all, let us rewrite it in terms of angu-
lar coordinates, keeping the notation in d-dimensional form
and denoting α as a generalized angle describing the rota-
tion. Thus, we obtain H(f ; α) = F (ρ)G(ψ − α) and expand
the angular part in an infinite series of spherical harmonics.
Spherical harmonics generalize sine and cosine functions and
allow for decomposition of angular functions in a fashion sim-
ilar to Fourier series G(ψ) =

∑∞
i=0

∑ji

j=0 aijY
j
i (ψ) where

Y j
i (ψ) is a spherical harmonic of order i, aij is an expansion
coefficient, and ji is the number of spherical harmonics of
order i. The constructed filter is steerable since any combina-
tion of spherical harmonics can be rotated by application of a
rotation matrix R(α), which consists of diagonally-centered
blocksRi(α) rotating the i-th order spherical harmonics [12].
Therefore, a set of functions aij(α) dependent on the rotation
angle can be obtained through a(α) = R(α)a. Subsequently,
they describe the function G(ψ) rotated by an arbitrary angle
α. In summary, the spherical harmonics decomposition of the

1The wave vector k is usually defined as k = 2πf .

filterH(f ; α) is given by

H(f ; α) = F (ρ)
∞∑

i=0

ji∑
j=0

aij(α)Y j
i (ψ)

with the condition aij(0) = aij for every i and j.
Filter design reduces in this case to choice of a suitable ra-

dial function F (ρ) and decomposition coefficients aij . While
the form of F (ρ) is restricted only by the requirement that
F (0) = 0, the set of allowed aij’s is more limited. A filter
has a nullifying plane if the angular part ofH(f ; α) is zero for
angles in that plane, which implies that the angular partG(ψ)
cannot be composed of spherical harmonics of even orders.
The final step consists of transforming the filter from the

frequency domain form (2) to the spatial domain. Using a
very elegant result developed in [13], we obtain

h(r, θ; α) =
∞∑

i=0

(−√−1)iHi {F (ρ)}
ji∑

j=0

aij(α)Y j
i (θ), (4)

whereHi stands for a d-dimensional integral transform of or-
der i similar to the Hankel transform, and defined as

Hi {F (ρ)} ≡ r1−d/2

∫ ∞

0

F (ρ)Ji+d/2−1(rρ)ρd/2dρ (5)

with x rewritten in terms of the spatial domain radius r and
generalized angle θ. The function Jn(r) is the n-th order
Bessel function of the first kind and serves as the kernel of the
transform. This powerful theorem gives us a semi-analytical
form for every possible filter which satisfies the aforemen-
tioned restrictions. We simplify the notation by imposing the
condition aij = 0 for even i and j, and gather terms to em-
phasize the fact that h(r, θ; α) is indeed a steerable filter, thus
obtaining

h(r, θ; α) =
∞∑

i=0

ji∑
j=0

bij(α)hij(r, θ), (6a)

bij(α) = (−1)ia(2i+1)j(α), (6b)

hij(r, θ) = H2i+1 {F (ρ)}Y j
2i+1(θ). (6c)

Equation (6a) can be subsequently used in the filter design
process, as it defines the most general filter that possesses
properties desired from an orientation estimation filter.

3. FILTER DESIGN

Having developed a firm theoretical basis for the design of fil-
ters for orientation estimation we engineer a two-dimensional
filter with high angular selectivity, and show that it is a gen-
eralization of the approximated derivative filter.
As an initial step in the design process we need to de-

fine the radial and angular functions of the designed filter. To
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create a general-use filter, we consider filters with a Gaussian-
like frequency domain radial functions given by

F (ρ) = ρm exp(−ρ2) withm ∈ R.

The Hankel transform (5) yields the basis radial functions

fi(r) =
Γ

(
1+m

2 + 2
)

(2i + 2)!

exp
(
− r2

8

)
r2

×
[
(2i + 1−m)M

(
m

2
, i + 1;

r2

4

)

+ (2i + m + 3)M
(

m

2
+ 1, i + 1;

r2

4

) ]
, (7)

where Γ(x) is the gamma function, andM(a, b; x) is theWhit-
taker M function [14]. The angular function G(ψ) was de-
signed with the aim of increasing its slope around the roots.
While the response function of the first derivative is only lin-
ear in the vicinity of the roots, we use a square wave because
of its infinite sharpness. Its spherical harmonic expansion
consists of only two spherical harmonics (sine and cosine
functions), with the general expression of the coefficients is
given by

ac
2i+1 = (−1)i 4

(2i + 1)π
and as

2i = 0. (8)

Therefore, the spatial domain formulae of the basis filters are

hc
i (r, θ) =

4
π

fi(r)
2i + 1

cos
(
(2i + 1)θ

)
, (9)

hs
i (r, θ) =

4
π

fi(r)
2i + 1

sin
(
(2i + 1)θ

)
. (10)

and in terms of those the response function becomes

T (α) =
n∑

i=0

(
hc

i (r, θ) cos α−hs
i (r, θ) sinα

)
∗s(r, θ). (11)

The governing equation (11) can be solved analytically
only for the zeroth order filter. For higher order filters only
numerical solutions are available. We used the VanWijngaarden-
Dekker-Brent [15] method to solve (11), with an initial guess
being the solution to the analytical zeroth order formula.
A crucial part of filter design is the transformation of a

continuous filter to the discrete domain, also known as sam-
pling. It is well-known, that performance of orientation esti-
mation filters heavily depends on the width of the sampled fil-
ter, and can be optimized by selecting a particular value. De-
fine the width σ to be the maximum distance r along any axis
of the discrete filter mask; in this case, the optimum widths
were found by filtering a set of synthetic test images made of
planar waves of frequencies ranging from zero to the Nyquist
frequency, and traveling at several angles between 0◦ and 45◦

to the x axis. We examined σ in the range from 0.1 to 17.5;
for each value of σ, a set of 1600 images of size 30× 30 with
40 different angles and frequencies was analyzed. The aver-
age error Ē = 1

n

√∑n
i=0(θ̂ − θ)2 was calculated and used to

choose an optimal value of σ = 10.1 (valid for 11 × 11 fil-
ter). During the filter optimization process we found that of
all tested values of the m parameter, filters with m > 1 gave
worse results than first order derivative filters. However, we
found that the case m = 0 yields better orientation estimates
and only this value was used in the experimental section.

4. EXPERIMENTS

To compare the designed filters against the first order deriv-
ative filters, we filtered a set of test images consisting of a
chirp, a parabolic and a planar wave signals, with a set of first
order derivative filter and our proposed filters of tap eleven.
Plots showing the errors in the estimated angle were gener-
ated, and are encoded in gray scale images on Fig. 1.
In all cases the average error of our filter was smaller than

that of the first order derivative approach. The plots reveal a
particular strength of our algorithm: the areas of the signal
with relatively small spatial variability, such as the crest of a
wave in the chirp or planar wave signals, or the bottom of the
parabolic signal, show the largest improvement. This obser-
vation may be due to the inclusion of higher order derivatives,
which remain non-zero even though the first order derivative
might be very close to that value.

5. CONCLUSIONS AND FUTUREWORK

In this paper we have generalized the Brightness Constancy
Constraint Equation to include higher order directional deriv-
atives. We developed a theoretical basis of design of steerable
filters for orientation estimation, and successfully applied it to
engineer a new class of filters which perform better than first
order derivative approaches, especially in the regions of low
variability of the signal, giving an overall relative improve-
ment of 10%-40%. Some features of the proposed filter, such
as the angular dependency of the error, still leave space for
further work and optimizations.
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(a) Chirp signal (b) Planar wave signal. (c) Parabollic signal.

(d) 35.5% improvement. (e) 12.8% improvement. (f) 44.2% improvement.

Fig. 1. Comparison between the first order (top panel) and the proposed filter (bottom panel, n = 7,m = 0). Plotted are errors
in degrees, in a scale from 0◦ to 10◦. As shown by quantitative error estimates, the proposed filter performs significantly better,
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