
FAST 8-BIT MEDIAN FILTERING BASED ON SEPARABILITY

David Cline Kenric B. White Parris K. Egbert

Brigham Young University Brigham Young University

ABSTRACT

We present a fast 8-bit median filter implementation based
on a separability argument. Our strategy is to start with a
naive separable implementation of the median filter which
displays O(1) time complexity per pixel, and then optimize
this implementation to reduce the time constant. The opti-
mizations that we employ include (a) lowering the histogram
memory requirements by using unsigned shorts or bytes as
histogram elements, (b) consolidating operations by perform-
ing multiple short additions with a single integer addition, (c)
employing SSE instructions to further speed up the histogram
updates, and (d) updating only the part of the histogram that
contains the median. We show that by employing these rather
straightforward optimizations, we can achieve filter speeds
that approach the performance of the fastest proprietary me-
dian filters currently in use.

Index Terms— Image processing, Median filters

1. INTRODUCTION

The median filter [1] is one of the most popular image pro-
cessing filters in use today. It is defined as replacing each
image pixel with the median value within a kernel mask sur-
rounding the pixel. Applications of median filtering include
image denoising, edge-preserving blur, background removal
in handwriting recognition, image sharpening and painterly
rendering effects (see figure 1).

The main drawback to the median filter, particularly for
large kernel sizes, is filter speed. A brute force implementa-
tion involves gathering and sorting all of the values within the
filter kernel, resulting in an O(n2 logn) time complexity per
pixel, where n is the width of the kernel. If the image data
is integer-valued, sorting can be eliminated by using a his-
togram instead of a sorted list, reducing the time complexity
to O(n2). This is still excruciatingly slow, however.

Huang [2] optimized the median filter, noting that the val-
ues within the filter kernel are mostly the same between neigh-
boring pixels–the center of the kernel remains intact, but the
leading and trailing edges of the kernel change. Huang took
advantage of this fact by updating the kernel histogram from
pixel to pixel rather than creating it from scratch each time.
This lead to an O(n) algorithm, which is quite fast for small
kernel sizes, but becomes slow as the kernel size increases.

Fig. 1. Median filtering, with a kernel radius of 32, performed
on a 6.4 megapixel image in less than one second using our
algorithm.

Recently, Weiss [3] developed a patented median filter
that works in O(logn) time per pixel. In Weiss’s algorithm, a
number of columns are processed at once, and the histogram
for a given column is stored as a set of partial histograms with
signed elements. By structuring calculations in this manner,
Weiss’s algorithm only needs to add each pixel to logn his-
tograms rather than n as required in Huang’s method.

In this paper we present an optimized median filter that
works for 8-bit images and rectangular kernels. The new algo-
rithm is based on separablility principles, and it runs in O(1)
time per pixel. Our algorithm works by keeping a separate
histogram for each column of an image. The histogram for a
particular kernel mask is incrementally assembled from mul-
tiple column histograms. While the obvious implementation
of our algorithm results in a large time constant, we show that
by applying a few straightforward optimizations to the initial
implementation, we can achieve speeds near the performance
of the fastest median filters currently in use.

2. A SEPARABLE IMPLEMENTATION OF THE
MEDIAN FILTER

This section details our basic separable implementation of the
median filter. Note that we are not talking about a “separa-
ble median” which computes the median of a set of medians.
Rather, we produce the true median of the kernel mask, but
optimize the implementation through separability principles.

As mentioned, our separable algorithm keeps a histogram
for each column in the image. Before processing a line of
pixels, we update all of the column histograms. This involves
adding and subtracting one pixel value from each column his-

V - 2811-4244-1437-7/07/$20.00 ©2007 IEEE ICIP 2007

��

���� ������

��� ���

��� ���

��

���������	
���

Fig. 2. Huang’s method vs. our separable implementation.
Huang updates the current histogram Hi by adding the val-
ues on the leading edge of the kernel to it and subtracting
the values on the trailing edge from it. The result is an O(n)
algorithm per pixel. On the other hand, our separable imple-
mentation updates Hi by adding the column histogram on the
leading edge of the kernel to it and subtracting the column
histogram on the trailing edge of the kernel. This results in an
O(1) time complexity per pixel, with a time constant that is
on the order of the histogram size.

togram. For column i, the update from row j to row j +1 can
be expressed as follows:

Ci, j+1 = Ci, j− Ii, j−r + Ii, j+r+1, (1)

where Ci, j is the histogram for column i with the kernel mask
centered on row j, Ii, j is the value of pixel (i, j) in the image,
and r is the kernel radius.

After updating the column histograms, we initialize the
kernel histogram for the left edge of the row, and then march
across the row, using the column histograms to update the
kernel histogram. This process is similar to Huang’s method,
except that we add and subtract complete column histograms
rather than individual pixel values, as shown in figure 2. Thus,
in its most basic form, our separable implementation requires
256 additions and 256 subtractions per pixel. Mathematically,
we can express the kernel histogram update from position i to
position i+1 as

Hi+1 = Hi−Ci−r +Ci+r+1, (2)

where Hi is the kernel histogram for position i, and once again
Ci is the column histogram for column i.

After creating the kernel histogram, we must find the me-
dian within it. The simplest way to do this is to scan through
the histogram starting at zero. In our code, we optimize the
median search by scanning up from zero or down from 255
depending on whether the previous median was below or above
128. The graphs in figure 4 show the performance of the basic
separable implementation, labeled as “separable (int)”.

Notice that our basic separable algorithm has a complex-
ity of O(1) per pixel, though it does have a large time constant
associated with it. Based on simply counting the number of
atomic operations, one might expect Huang’s method to out-
perform our separable implementation up to a kernel radius

of about 128. The crossover point between the two meth-
ods is actually much lower, around 50, however. This extra
speed can be explained by the natural vectorized nature of the
separable implementation. The bulk of the processing in the
separable algorithm lies in adding and subracting complete
histograms (vector operations), whereas Huang’s algorithm
adds and subtracts single values (random access operations).

3. OPTIMIZING THE BASIC IMPLEMENTATION

This section describes a number of optimizations that take ad-
vantage of the inherent vector nature of the separable imple-
mentation. None of these optimizations are complicated, but
taken together they nearly triple the performance of our im-
plementation, pushing the crossover point between our method
and Huang’s to about radius 20.

Bottlenecks of the separable algorithm. It shouldn’t be
hard to see that updating the kernel histogram and finding the
median are the bottlenecks of the separable implementation.
In fact, updating the kernel histogram accounts for about 88%
of the total run time. For this reason, it makes sense to con-
centrate optimization efforts on speeding up the kernel his-
togram updates.

Reducing column histogram memory usage. Assum-
ing that we only care about kernel sizes up to 255×255, the
column histograms can be stored as unsigned shorts or bytes
rather than integers. Moving to unsigned bytes reduces stor-
age and memory bandwidth requirements by a factor of 4.
Figure 4 shows the result of making this change, labeled as
“separable (byte)”.

Performing two short adds with a single integer add.
While storing the column histograms as unsigned shorts or
bytes reduces memory throughput requirements, 512 opera-
tions are still needed to update the kernel histogram for each
pixel. We can cut this number in half if we store both the ker-
nel and column histograms as unsigned short integers. The
idea is to store the histograms as unsigned shorts, but perform
the update with unsigned integer additions. In essence, we
are treating single integers as parallel registers that operate on
two shorts simultaneously. This version of the algorithm is la-
beled “separable (multiadd)” in figure 4. Of course, we could
perform four operations at once by storing the histograms as
unsigned bytes, but that would restrict the maximum kernel
radius to 7.

Combining operations using SIMD instructions. We
can further consolidate the operations that must be performed
during a histogram update by using SIMD instructions. SSE
provides instructions to add or subtract 4 integers at a time, so
by performing the histogram updates in SSE registers, the his-
togram updates reduce to 32 vector subtractions and 32 vector
additions. Our timing results for the SSE version of the algo-
rithm are labeled “separable (sse)” in figure 4. We did not
attempt to optimize our code for the Power Mac, but we sus-

V - 282

pect that similar speedups to those seen on the x86 platforms
using SSE could be achieved on the Mac using Altivec.

At this point we have a fairly fast implementation for large
kernels. For example, on our Pentium 4 test machine, the SSE
optimized algorithm can filter a 6.4 megapixel image in about
two seconds for kernels up to radius 127. This is about four
times faster than our best implementation of Huang’s algo-
rithm at radius 127, and thirteen times faster than Photoshop
6.0 at radius 100. Nevertheless, the memory throughput of
the algorithm remains very high, 1024 bytes per pixel. This
high throughput stems from the fact that we add and subtract
a complete column histogram for each pixel. In the next sec-
tion, we will show how to reduce the throughput by as much
as 8 times by only updating part of the histogram each time.

4. PARTIAL HISTOGRAM UPDATES

Up to now our optimization strategy has been built around
pushing the same amount of data through the computer faster.
In this section, we take a different tack, concentrating on find-
ing the median while reducing the required data throughput.
Our basic strategy is to identify a small segment of the his-
togram that is guaranteed to contain the median, and then up-
date only this part of the histogram.

The coarse histogram. In our implementation, we divide
the histogram into 16 segments, each containing 16 elements.
To determine the histogram segment that contains the median,
we define a “coarse” histogram that is the histogram of pixel
values that have been divided by 16. As with the standard
histograms, we store a coarse histogram for each column in
the image. Updating the coarse histogram for a pixel only
requires 1/16th the data throughput of the full 256 element
histogram.

Updating the histogram segment containing the me-
dian. An important property of the coarse histogram is that
its median tells us which segment of the full histogram the
true median lies in. In particular, if element s is the median of
the coarse histogram, the median of the full histogram must
lie between elements 16s and 16(s + 1). Thus, we can find
the median as follows: first, we update the coarse histogram
and find its median. Next, we update the segment of the
full histogram corresponding to the coarse median and search
through this segment to find the true median.

We keep track of the last column in which the algorithm
updated each histogram segment, and use this information to
decide whether to update the segment incrementally or re-
build it from scratch. In the common case where the median
lies in the same segment as the previous pixel, the segment
update only requires 16 additions and 16 subtractions, which
can be done in SSE instructions with just 2 additions and 2
subtractions, assuming that we store histogram elements as
unsigned shorts. Even in the worst case, the partial update

1. Initialize the coarse column histograms.
2. Initialize the full resolution column histograms.
3. For j = 0 to imageheight−1
4. Initialize the coarse kernel histogram.
5. Initialize the full resolution kernel histogram.
6. Set the last updated column to 0 for all segments.
7. Find the median and write it to the destination image.
8. For i = 1 to imagewidth−1
9. Update the coarse kernel histogram.

10. Find the coarse median and sum of elements below it.
11. Update the hist. segment S containing the coarse median:
12. Let c be the last column for which S was updated.
13. If i− c > the kernel radius, r
14. Update S from scratch.
15. Else
16. Update S incrementally.
17. Find the median starting at the beginning of S.
18. Write the median to the destination image.
19. Set the last updated column for S to i.
20. Update the coarse column histograms.
21. Update the full resolution column histograms.

Fig. 3. Partial histogram update median filtering algorithm.

does not require more segment updates than updating the full
histogram each time.

Finally, we note that because of cache issues it is much
more efficient to store histogram segments as contiguous
blocks of memory rather than storing complete histograms to-
gether. Thus, it is better to store the column histograms as 16
arrays with 16× imagewidth elements rather than one array
with 256× imagewidth elements.

Figure 3 gives pseudocode for the partial update algo-
rithm. Timing results for this method are labeled as “partial
update” in figure 4.

5. TIMING RESULTS

This section gives timings for different variants of our median
filtering algorithm on three test platforms, a 3.2 GHz Pen-
tium 4, a 2.2 GHz Athlon 64 3500+, and a 2 GHz Power Mac
G5. The Pentium 4 graph also shows timings for Photoshop
version 6.0 for comparison. (This was the only platform on
which we had access to Photoshop.) All of the timing results
are for the 3000×2250 image shown in figure 1, although we
recorded similar filter times for a number of other test images.

Huang’s method. To create timing results for Huang’s
method, we coded several different variants of his algorithm,
such as scanning vertically or horizontally over the image,
and keeping track of a pivot or not. Then, for each kernel size
we kept the best time of all the variants. Just as an aside, our
experiments with Huang’s algorithm yielded some interesting

V - 283

results. Most interesting was the disparity between horizon-
tal and vertical scanning. Our experiments showed that scan-
ning horizontally is faster for small kernels up to about radius
50, but slower for large kernels. In fact, choosing the right
scan direction resulted in a speedup of more than four times
in some of our tests.

The separable methods. The timings labeled “separa-
ble...” show the results of the different optimizations described
in section 3. Our basic separable implmentation, “separable
(int)”, is already appreciably faster than our best implmen-
tation of Huang’s algorithm for very large kernels, but the
optimizations outlined in section 3 more than double the per-
formance of the separable implementation on the Intel and
AMD test machines, and nearly double the performance on
the Power Mac even without employing SIMD instructions.

Partial histogram updates. Performing partial instead
of complete histogram updates as described in section 4 more
than doubled the already fast speed of the separable imple-
mentation on all three of our test platforms. Unfortunately,
SSE instructions provided only a slight improvement (∼7%)
on the AMD test machine, and no improvement at all on the
Intel test machine (so we did not graph “partial update (sse)”
for the Intel platform). Nevertheless, the “partial update” tim-
ing results on all of our test machines are still quite fast, and
the crossover point between our partial update algorithm and
Huang’s method is around radius 7 for all three platforms.
Thus, we recommend using Huang’s method (with a horizon-
tal scan) up to kernel radius 7, and the partial update method
for larger sizes.

Comparison with Weiss’s method. We do not have the
capability currently to test our method directly against Weiss’s
Photoshop plugin, but based on his published results, we be-
lieve that our algorithm is within two or three times the per-
formance of his proprietary method for 8-bit data. (He filtered
an 8 megapixel RGB image in about 1.4 seconds on a 2.5 GHz
Power Mac G5, and we filtered a 6.4 megapixel grayscale im-
age in 1.3 seconds on a 2.0 GHz Power Mac.)

Recent developments. While finishing this article, we
discovered that simultaneous to our work, researchers at Uni-
versité Laval in Quebec, Simon Perreault and Patrick Hébert,
were working on a very similar median filter algorithm. Their
work has since been accepted for publication in IEEE Trans-
actions on Image Processing, and preliminary results can be
found on the web at http://nomis80.org/ctmf.html.

6. REFERENCES

[1] John Tukey, “Exploratory Data Analysis,” 1977,
Addison-Wesley.

[2] T. S. Huang, “Two-Dimensional Signal Processing II:
Transforms and Median Filters,” 1981, pp. 209–211,
Berlin: Springer-Verlag.

[3] Ben Weiss, “Fast median and bilateral filtering,” in ACM
Trans. Graph., New York, NY, USA, 2006, vol. 25, pp.
519–526, ACM Press.

������� 	
��
 ����

�

�

�

�

�

�

�

�

	

��

� �� �� �� 	� ��� ���

������ ������

��������� ���

�����
�����

���������
����

���������
�����

���������
���������

���������
����

������� ������

�
��

�

������ �	
���
 ���� ����

�

�

�

�

�

�

�

�

	

��

� �� �� �� 	� ��� ���

������ ������

����� ������

�� ������ �����

�� ������ ��!���

�� ������ ����������

�� ������ �����

 ������ � ����

 ������ � ���� �����

�
��

�

����� ��	
� �

���

�

�

�

�

�

�

�

�

	

��

� �� �� �� 	� ��� ���

������ ������

����� ������

��������� �����

��������� ������

��������� ����������

������� ������

�
��

�

Fig. 4. Median filter timings for different hardware configu-
rations. All timings are for the 6.4 megapixel test image from
figure 1.

V - 284

