
IMPROVED RATE CONTROL AND MOTION ESTIMATION FOR H.264 ENCODER

Loren Merritt‡ and Rahul Vanam†

‡ VideoLAN, Club VIA Centrale Réseaux, Résidence Ecole Centrale,
2, avenue Sully Prudhomme, 92 290 Châtenay Malabry, France.

†Dept. of Electrical Engineering, University of Washington, Box 352500, Seattle, WA 98195-2500, USA.
lorenm@u.washington.edu, rahulv@ee.washington.edu

ABSTRACT

In this paper, we describe rate control and motion estimation
in x264, an open source H.264/AVC encoder. We compare the
rate control methods of x264 with the JM reference encoder
and show that our approach performs well in both PSNR and
bitrate. In motion estimation, we describe our implementa-
tion of initialization and show that it improves PSNR. We
also propose an early termination for simplified uneven cross
multi hexagon grid search (UMH) in x264 and show that it
improves the speed by a factor of 1.5. Finally, we show that
x264 performs 50 times faster and provides bitrates within 5%
of the JM reference encoder for the same PSNR.

Index Terms— Video coding, rate control, motion esti-
mation.

1. INTRODUCTION

The joint effort by ITU-T’s Video Coding Experts Group and
ISO/IEC’s Moving Pictures Experts Group resulted in stan-
dardization of H.264/MPEG-4 AVC in 2003 [1]. Like pre-
vious standards, H.264 specifies only a decoder, therefore
allowing for improvement in compression rate, quality and
speed in designing the encoder. The encoder developed by
the Joint Video Team, known as the Joint Model (JM) [2], has
been used as a reference by encoder developers in enhancing
existing algorithms. However, due to its slow speed, its use
has been limited.

Another H.264 open source encoder is x264 [3]. Its de-
velopment started in 2003, and it has been used in many pop-
ular applications like ffdshow, ffmpeg and MEncoder. In a
recent study, x264 showed better quality than several com-
mercial H.264 encoders [4]. The high performance of x264 is
attributed to its rate control, motion estimation, macroblock
mode decision, quantization and frame type decision algo-
rithms. In this paper, we describe the implementation of rate
control in x264 (ver 0.47.534) [3] and compare its perfor-
mance with the JM encoder (ver. 10.2) [2]. We also describe
our modified initialization and early termination algorithms

This research has been supported in part by the NSF grant CCF-0514353.

for motion estimation in x264. Finally, we compare the over-
all performance of the above two encoders and show that x264
is about 50 times faster and provides bitrates within 5% of JM
for the same PSNR.

2. RATE CONTROL

Rate control allows selection of encoding parameters to maxi-
mize quality under bitrate and decoder video buffer constraints.
The rate control in H.264 can be performed at three different
granularities - group of pictures level, picture level, and mac-
roblocks level [5]. At each level, the rate control algorithm
selects the quantization parameter (QP) values that determine
the quantization of the transformed coefficients. As the QP in-
creases, the quantization step size increases and the bitrate de-
creases. The rate control in x264 is based in part upon libav-
codec’s implementation [6], which is mostly empirical. It in-
cludes five different modes, one two-pass and four one-pass
modes, that are described below. In the constant bitrate mode,
each macroblock is allowed to have a different QP, while in
other modes, the QP is determined for an entire frame.

2.1. Two pass (2pass)

In this approach, data obtained from each frame during a first
pass are used for allocating bits globally over the file during
the second pass. After applying a one-pass mode in the first
pass, the 2pass approach is implemented as follows:

1. The relative number of bits to be allocated between P-
frames is selected independently of the total number of bits
and it is calculated empirically by bits ∝ complexity0.6,
where complexity is the predicted bit size of a given frame
at constant QP. The I- and B-frames use the QP from nearby
P-frames with a constant offset.

2. The results of step (1) are scaled to fill the requested
file size.

3. After encoding each frame, the future QPs are updated
to account for the mispredictions in size (this is referred to as
long-term compensation). If the second pass is consistently
off from the predicted size, then the target size of all future
frames is multiplied by a factor =

predicted filesize
real filesize

, and

V - 3091-4244-1437-7/07/$20.00 ©2007 IEEE ICIP 2007

their QPs are recomputed. Apart from long-term compensa-
tion, there is short-term compensation to prevent x264 from
deviating too far from the desired file size near the beginning
(when there are less data for long-term compensation) and
near the end (when long-term compensation does not have
time to react). In short-term compensation, the compensation
factor is C(real filesize−predicted filesize), where C is a user
defined constant.

2.2. Average Bitrate (ABR)

This is a one-pass scheme which produces near-constant qual-
ity within a specified file size. Since the rate control must be
done without the knowledge of the future frames, ABR can-
not exactly achieve the target file size. The steps given below
are numbered to match the corresponding steps in 2pass.

1. The relative bit allocation is the same as in 2pass, ex-
cept that instead of estimating complexity from a previous en-
code, we run a fast motion estimation algorithm over a half-
resolution version of each frame, and use the Sum of Absolute
Hadamard Transformed Differences (SATD) of the residuals
as the complexity. Because the complexity of the following
Group of Pictures is unknown, the I-frame QPs are based on
the past.

2. We do not know the complexities of the future frames,
so we only scale based on the past. The scaling factor is set
to the one that would have resulted in the desired bitrate if it
had been applied to all the frames so far.

3. Long and short term compensation are the same as in
2pass. By tuning the strength of compensation, it is possible
to obtain quality ranging from close to 2pass (but with file
size error of ±10%) to lower quality with strict file size.

2.3. Video buffer verifier compliant constant bitrate (CBR)

This is a one-pass mode designed for real-time streaming.
The steps given below are numbered to match the correspond-
ing steps in 2pass.

1. It uses the same complexity estimation for computing
bit size as ABR does.

2. The scaling factor used for achieving the requested bi-
trate is based on a local average (dependent on the buffer size
of the video buffer verifier) instead of all past frames.

3. The overflow compensation is the same as in ABR, but
runs after each row of macroblocks instead of per-frame.

2.4. Constant rate-factor and Constant Quantizer

The constant rate-factor mode (CRF) is a one-pass mode that
is optimal if the user specifies quality instead of bitrate. It
is the same as ABR, except that the scaling factor is a user-
defined constant and no overflow compensation is done. Fi-
nally, the constant quantizer mode (CQP) is a one-pass mode
where QPs are simply based on whether the frame is I-, P- or

Table 1. Rate control in x264 and JM encoder for a target
bitrate of 1200 kb/s

Approach Bitrate (kb/s) PSNR (dB)
JM-CBR 1189.4 40.810

x264-CBR 1120.7 41.569
JM-CQP 1212.9 44.035

x264-CQP 1137.2 44.033
x264-ABR 1169.9 42.815
x264-CRF 1133.9 44.176
x264-2pass 1199.2 44.472

B-frame. This mode is used when the rate control option is
disabled.

2.5. Comparisons

In this section, we compare different rate control methods in
both x264 and JM encoder [2] for a target bitrate of 1200 kb/s.
For comparison, we use a video sequence (Elephants Dream)
[7], at 720x480 pixels resolution, 25 frames per second (fps)
and 15691 frames. For both encoders, we use five reference
frames and select the other parameters to result in the best
PSNR. Table 1 gives the resulting bitrate and PSNR for dif-
ferent rate control approaches in JM and x264 encoder. We
obtain the PSNR by averaging the individual PSNR values for
YUV in the proportion they appear (4:2:0), and then average
it over all frames and video clips. As expected, x264 2pass
approach performs the best by achieving closest to the target
bitrate with the highest PSNR. For CBR, x264 achieves 0.76
dB PSNR improvement over JM, even with a lower bitrate.
For CQP, using QP = 21 and 23 for x264 and JM, respec-
tively, we obtain the same PSNR for both the encoders, but
x264 has a lower bitrate. Among the different x264 one pass
approaches, CRF provides the best quality. Although CRF
and CQP have similar average PSNR, psychovisually CRF
performs better than CQP.

3. MOTION ESTIMATION

Motion estimation (ME) is the most complex and time con-
suming part of the H.264 encoder as it uses multiple predic-
tion modes and reference frames. There are four different
integer-pixel motion estimation methods provided by x264:
diamond (DIA), hexagon (HEX), uneven multihexagon (UMH)
[8] and successive elimination exhaustive search (ESA) [9].
UMH provides good speed without sacrificing significant qual-
ity, while hexagon is a good tradeoff for higher speeds. In
step (1) of this section, we propose a modified initialization
for all motion search methods that improves PSNR and in
steps (2)-(7) we describe early termination and range adap-
tation (ETRA) algorithm for UMH that improves its speed.
The following steps describe both algorithms:

V - 310

(a) (b)

Fig. 1. Candidate motion vectors for motion search from (a)
the current frame and (b) the previous frame, where E and X
represents the current macroblock location.

1. Modified Initialization: We consider up to 10 candi-
date motion vectors (MVs) that consist of four MVs from the
neighboring locations in the current frame (A,B,C,D), three
MVs in the previous frame (X,Y,Z), the (0,0) MV, the median
MV and the temporal direct MV. These 10 MVs are used in
the initialization step for all ME methods. Figures 1(a) and
1(b) illustrate current frame MVs and previous frame MVs,
respectively. Each block that is being encoded in the current
frame is referred to as the reference index. We keep track of
the MVs for each reference index at each position in space
(referred to as motion field). The four neighboring MVs are
taken from the motion field of the reference index that is cur-
rently being searched. The MVs from the previous frame are
scaled based upon the amount of time they span. We compare
the sum of absolute differences (SAD) of each candidate, and
choose the best SAD.

2. One step of the diamond search is applied to (0,0) and
the median MV.

3. If the block size is 4x4, break from UMH and apply the
hexagon search. Else, continue.

4. Apply one step of diamond search to the best MV. This
is labeled as ’1’ in Fig 2.

5. Early termination: If step (4) did not find a new best
MV, then perform the following early termination:

a. Perform diamond search of radius two. This is labeled
as ’2’ in Fig 2.

b. If steps (1) or (2) found a new MV, run a symmetric
cross search (radius 7) and an octagon search (radius
two). This is labeled as ’3’ in Fig 2.

c. If steps (5a) and (5b) did not find a new MV, then break.

6. Adaptive radius: Select the search range for step (7),
based on the magnitude of the best SAD so far, and on the
smoothness of the motion field (i.e., the variance between the
predictors used in step (1)). The default search range is 16.
This may decrease as low as 12 if the SAD is small and the
predictors are similar, and may increase as high as 24 if the
SAD is large and the predictors differ greatly.

7. Run 5 × 5 exhaustive search, uneven cross, multi-
hexagon-grid, and iterative hexagon refinement as in JM.

The above algorithm differs from the JM implementation
in many ways. JM does not do steps (5) or (6), and uses

Fig. 2. Search approach for early termination decision in un-
even multi-hexagon search. Diamond search of radius one is
labeled as ’1,’ diamond search of radius two is labeled as ’2,’
and symmetric cross search of radius 7 and octagon search of
radius two is labeled as ’3.’

Table 2. Comparison of motion search methods in x264 with
and without optimizations.

Approach Δpsnr (dB) timeME (s)
DIA x264 -0.039 3.82

DIA no emv -0.205 2.98
HEX x264 -0.031 4.67

HEX no emv -0.165 3.73
UMH x264 -0.005 10.41

UMH no emv -0.035 9.86
UMH no ETRA -0.006 16.70
UMH no both -0.035 15.62

ESA x264 0.000 50.51
ESA no emv -0.047 51.36

three candidate MVs in step (1). Between each of these candi-
dates, JM applies a termination threshold based on the candi-
date’s SAD, and decides whether to skip directly to diamond
or hexagon search. In x264, we find it useful to check all
candidate MVs.

3.1. Comparisons

In this section, we compare x264 with and without the use
of extra MVs during initialization and the use of ETRA for
UMH. In our tests, we use 19 CIF videos from [10] and 11
videos (720p and 1080p) from [11]. In Table 2, we list the
PSNR averaged over all video clips of each ME approach rel-
ative to ESA with extra MVs (Δpsnr). We also list the geo-
metric mean of the time taken for ME only (timeME). Since
larger resolution videos take longer to encode than smaller
resolution videos, we use geometric mean instead of arith-
metic mean for timeME . All timing measurements in this

V - 311

paper are obtained by running tests on an AMD Athlon64 2.2
GHz system.

We represent ME approach ME that use extra MVs at ini-
tialization (together with ETRA in UMH) as ME x264, ME

without extra MVs as ME no emv, UMH without ETRA as
UMH no ETRA and UMH without ETRA and extra MVs
as UMH no both. Here, ME can be DIA, HEX, UMH or
ESA. The use of extra MVs improves the PSNR of DIA and
HEX and they are comparable to UMH no emv, but faster
by a factor of 2.6 and 2.1, respectively. The use of extra MVs
and ETRA in UMH improves the PSNR by 0.03 dB and speed
by a factor of 1.5.

4. COMPARISONWITH THE JM ENCODER

In this section, we compare the performance of x264 and JM
using 19 CIF sequences available in [10]. We compare the
two encoders for 10 different QPs, from 12 to 39 in steps
of three. The encoding parameters for both the encoders are
the same as in Section 2.5. Comparison is made based on
average encoding time per frame and bitrate normalized for
fixed PSNR. From Fig 3(a), we find that on average, x264
performs 50 times faster when compared to JM for the same
PSNR. Without assembly optimized code for primitive oper-
ations, x264 performs 20 times faster than JM for the same
PSNR. In Fig 3(b), we see that x264 provides bitrate savings
of up to 3.4% over JM for PSNRs above 38 dB and for PSNRs
below 38 dB, there is slight increase in bitrate up to 5%.

5. CONCLUSION

In this paper, we presented five different rate control modes
in x264 and made comparisons with the JM encoder. For
the CBR scheme, x264 achieves a lower bitrate and 0.76 dB
higher PSNR when compared to JM. We show that the use of
extra MVs in motion estimation improves the PSNR and early
termination improves the speed of UMH by a factor of 1.5. Fi-
nally, we show that x264 performs about 50 times faster and
provides bitrates within 5% of JM for the same PSNR.

6. ACKNOWLEDGEMENT

We thank Laurent Aimar, Min Chen, Radek Czyz, Christian
Heine, Alex Izvorski, Eric Petit, Måns Rullgård, and Alex
Wright for their contributions in developing x264. We also
thank Prof. Eve Riskin and Prof. Richard Ladner for helpful
comments and discussions.

7. REFERENCES

[1] T. Wiegand, G. J. Sullivan, G. Bjøntegaard, and A. Luthra,
“Overview of the H.264/AVC video coding standard,” IEEE
Trans. CSVT, vol. 13, no. 7, pp. 560–576, 2003.

[2] “JM ver. 10.2,” http://iphome.hhi.de/suehring/tml/index.htm.

30 35 40 45 50
10−2

10−1

100

101
Average encoding time per frame vs. PSNR

A
ve

ra
ge

 E
nc

od
in

g
tim

e
pe

r f
ra

m
e

(s
ec

on
ds

)

PSNR (dB)

JM

x264

(a)

30 35 40 45 50
0.95

0.96

0.97

0.98

0.99

1

1.01

1.02

1.03

1.04

1.05
Relative bitrate vs. PSNR

R
el

at
iv

e
bi

tra
te

PSNR (dB)

x264
JM

(b)

Fig. 3. JM vs. x264 (a) Average encoding time per frame vs.
average PSNR, (b) relative bitrate vs. average PSNR.

[3] “x264,” http://developers.videolan.org/x264.html.
[4] “MPEG-4 AVC/H.264 video codec comparison,” CS

MSU Graphics & Media Lab Video Group, Dec 2005,
http://www.compression.ru/video/index.htm.

[5] G. J. Sullivan, T. Wiegand, and K.-P. Lim, “Joint model refer-
ence encoding methods and decoding concealment methods,”
JVT-N046, Jan 2005.

[6] “ffmpeg,” http://ffmpeg.org/.
[7] “Elephants dream,” http://orange.blender.org/.
[8] X. Yi, J. Zhang, and N. Ling, “Improved and simplified fast

motion estimation for JM,” JVT-P021, July 2005.
[9] X. Gao, C. J. Duanmu, and C. R. Zou, “A multilevel successive

elimination algorithm for block matching motion estimation,”
IEEE Trans. on Image Proc., vol. 9, no. 3, pp. 501–504, 2000.

[10] “CIF sample videos,” http://www.tkn.tu-
berlin.de/research/evalvid/cif.html.

[11] “HD sample videos,” ftp://ftp.ldv.e-technik.tu-
muenchen.de/pub/test sequences/.

V - 312

