
Complexity Modeling for Motion Compensation in H.264/AVC Decoder

Szu-Wei Lee and C.-C. Jay Kuo
Ming Hsieh Department of Electrical Engineering and Signal and Image Processing Institute

University of Southern California, Los Angeles, CA 90089, USA
E-mails: szuwei.lee@usc.edu and cckuo@sipi.usc.edu

ABSTRACT
A complexity model for motion compensation in the H.264/AVC
decoder is proposed. This model considers a rich set of inter
prediction modes allowed by H.264 as well as the relationship of
motion vectors (MVs), which are related to cache miss
performance. This model is verified by experimental results.
Possible applications of the complexity model are also described.
One application scenario is to integrate it in an H.264 encoder so
that the encoder can estimate the decoding complexity and choose
the best inter prediction mode to meet the complexity constraint of
the target decoding platform.

Index Terms— H.264/AVC, motion compensation, decoder
complexity, rate-distortion optimization (RDO)

1. INTRODUCTION

H.264/AVC [1] is the latest video coding standard proposed by
ITU-T and ISO/IEC. It has been selected as the video coding tool in
HD-DVD and Blue-ray specifications. H.264 provides various inter
prediction modes to improve the coding gain. That is, its encoder
may search all possible inter prediction modes and choose the best
one that minimizes the rate-distortion (RD) cost. Due to the use of a
larger set of inter prediction modes, the H.264 decoding complexity
becomes higher, too. For example, it was reported in [6] that its
complexity is about 2.1 to 2.9 times more than the H.263 decoder.
For some applications, the coded video bit stream will be decoded
in portable consumer electronics devices. Under such a scenario,
the reduction in decoding complexity so as to save the power
becomes a critical issue.

To achieve the power saving purpose of the H.264 decoder, one
solution is to allow the H.264 encoder to generate a decoder-
friendly bit stream. That is, the H.264 encoder has a target decoding
platform in mind and yields a bit stream that is easy to decode in
that platform. This motivates us to study the complexity model for
the H.264 decoder. Once the model is available, it can be used by
the H.264 encoder to estimate the decoding complexity for various
inter prediction modes and then select the best one to balance the
tradeoff between rate-distortion (RD) and decoding complexity.
Since a general decoding complexity model is too broad to cover,
we are focused on the complexity model for motion compensation
(MCP, i.e. the decoding process for inter prediction) operation in
H.264 in this work.

The decoding complexity models have been studied in the past [2]-
[5]. A MPEG-4 video complexity verifier (VCV) model was
described in [2], where the numbers of boundary macro-blocks
(MBs) and non-boundary MBs decoded per second are estimated
and the decoding complexity can be modeled as a function of these
two numbers. However, the decoding complexities of the MBs
coded by different inter prediction modes in MPEG-4 can be
different so that the VCV model is not very accurate. To address
this shortcoming, Valentim et al. [3][4] proposed an enhanced

complexity model of MCP operation for MPEG-4 video. By
considering the fact that MBs coded with different inter prediction
modes have different decoding complexities, they use the maximal
decoding time to measure the decoding complexity of MBs coded
by different inter prediction modes individually. Then, the total
decoding complexity of this bit stream is the sum of each individual
MB’s complexity. More recently, it was reported in [5] that the
complexity model for MCP can be simplified and the decoding
complexity of MB is proportional to the number of motion vectors
(MVs). In other words, the MB with more MVs should have higher
decoding complexity than that with fewer MVs.

The above decoding complexity models are however not suitable
for H.264 for two reasons. First, H.264 provides a richer set of inter
prediction modes that cannot be well handled by the existing
models. Second, these models do not take the relationship of MVs
into account. Since the relationship of MVs is related to the
efficiency of cache management, it plays an important role in CPU
performance and therefore decoding complexity. A new complexity
model for MCP is provided to address these two issues in this work.

The rest of this paper is organized as follows. An H.264 decoding
complexity model for MCP operation is proposed in Sec. 2. The
proposed decoding complexity model is verified experimentally in
Sec. 3. The applications of the decoding complexity model and its
integration with an H.264 encoder are discussed in Sec. 4. Finally,
concluding remarks are given in Sec. 5.

2. PROPOSED COMPLEXITY MODEL

2.1 Complexity model
H.264 provides various block sizes for inter prediction to improve
the coding gain. One 16x16 MB can be partitioned into one 16x16
block, two 16x8 or 8x16 blocks or four 8x8 blocks. Each 8x8
blocks can be further partitioned into two 8x4 or 4x8 blocks or four
4x4 blocks. As a result, there are totally 19 modes to encode one
16x16 MB. Moreover, each block whose size is larger than 8x8 can
be predicted using different reference frames. In addition, H.264
provides fractional samples of motion estimation (ME). The MV
can be of half- or quarter-pel resolution. The half-pel value is
obtained by applying a one-dimension 6-tap FIR interpolation filter
horizontally (the x-direction) or vertically (the y-direction). The
quarter-pel value is obtained by the average of two nearest half-pel
values. This flexibility makes the decoding complexity modeling
more challenging as compared with that in [3],[4].

In this work, the decoding complexity is modeled as a function of
the number of cache misses cN , the number of y-direction
interpolation filters yN , the number of x-direction interpolation
filters xN and the number of MVs per MB vN . Mathematically, it
can be written as

vxyc NNNN , (1)

V - 3131-4244-1437-7/07/$20.00 ©2007 IEEE ICIP 2007

where ,,, are weight coefficients of these four decoding
complexity coefficients, respectively. As done in [5], our model
includes the number of MVs per MB. The numbers of the x-
direction and the y-direction interpolation filters are used to model
the decoding complexity of interpolation filter if the MV is of half-
or quarter-pel accuracy. Since the decoder may have different
implementations of interpolation filters along the x- and y-
directions, two different terms are used in the proposed decoding
complexity model.

Figure 1. Inter prediction of two successive blocks

Furthermore, we include the number of cache misses to deal with
two cases shown in Fig. 1, where two MVs point to two reference
blocks with a different spatial relationship. The two reference
blocks are closer to each other in Case I but far away in Case II. The
decoding complexities of the two cases are different since most data
required for block B in Case I could be obtained in the CPU cache
or internal registers after the decoding of block A is done.
Intuitively, the number of cache misses for Case I is fewer than that
of Case II, and the decoding complexity for block B in Case I
should be lower than that of Case II.

Two experiments are conducted on Pentium 1.7 Ghz mobile CPU
platform to verify this conjecture. We modify the H.264 encoder so
that the encoder can use a specific inter prediction mode to encode
MBs. Two inter prediction modes, i.e. P16x8 and P8x16, are
selected to encode Foreman sequence and generate two bit streams
where MV is only allowed in the integer-pel position. It is observed
by Intel Vtune that MCP decoding complexities of these two bit
streams are quite different. The MCP decoding complexity of the
bit stream encoded by P16x8 takes about 64.85 milli-seconds while
that encoded by P8x16 takes about 100.19 milli-seconds. This
implies that the number of MVs is not the only factor to decide the
MCP decoding complexity. In addition, the P4x4 mode is selected
to encode Foreman and Container sequences where MV is only
allowed in the integer-pel position again. It is also observed by Intel
Vtune that their MCP decoding complexities are quite different, too.
The MCP decoding complexities of Foreman and Container P4x4
bit streams take about 272.19 and 208.58 milli-seconds,
respectively. The reason of demanding less MCP decoding
complexity for the Container bit stream is that it contains a large
smoother area and its relationship of MVs is similar to that in Case I
while Foreman has a lot of motion and its relationship of MVs is
similar to that in Case II. This demonstrates that the relationship of
MVs plays an important role in the decoding complexity model.

The weight coefficients in Eq. (1) can be obtained by the following
steps. First, several pre-encoded bit streams are selected and the
Intel Vtune performance analyzer is used to measure the number of
clock ticks spent by the MCP operation. Second, the numbers of the
decoding complexity coefficients are counted individually for these

pre-encoded bit streams. Finally, the constrained least square
approach is used to find the best fitting of the weight coefficients.

For simplicity, the decoding complexities of MB with a half- and a
quarter-pel MV in our complexity model are assumed to be the
same since the operation that takes the average of two nearest half-
pixels requires only two addition and one shift instructions. As
compared to other operations, the cost of these operations is low
and negligible in most platforms.

2.2 Computation of cache misses
As mentioned in the previous section, the relationship of MVs of
successive blocks can lead to different decoding complexities. To
deal with the two cases as shown in Fig. 1, a simple cache model is
used to compute the number of cache misses. The simple cache has
T entries and each entry has L bytes. If the required data for the
MCP operation from address iaddr with data size S cannot be
found in the cache, the number of cache misses is added by one and
then the cache entries are updated.

The MCP operation consists of the luminance and the chrominance
parts. Since the luminance MCP operation is similar to the
chrominance one, the decoding complexity of the whole MCP
operation is in proportion to that of the luminance part. Thus, only
luminance MCP is considered for simplicity, and the starting
address and the size of memory access for luminance MCP are
examined to compute the number of cache misses.

The luminance MCP for an MxN integer-pixel block can be viewed
as the access to a 2D array with N rows and M columns, and it takes
N times of memory accesses where each memory access is M bytes
because each luminance component of pixel is usually represented
as 8-bit integer. However, if the y-direction MV points to a non-
integer pixel position, two additional rows in the top of the MxN
block and three additional rows in the bottom of this block are
needed for the y-direction interpolation filters. Similarly, if the x-
direction MV is at a non-integer pixel position, two additional
columns to the left and three additional columns to the right of the
block are needed for the x-direction interpolation filters. Table 1
lists the number of memory accesses and its size for different MV
positions.

TABEL I. NUMBERS OF MEMORY ACCESSES, MEMORY ACCESS SIZES
AND STARTING ADDRESSES OF THE FIRST MEMORY ACCESS.

Position of MV=(x, y) Number of
memory
accesses

Size per
memory
access

Starting address of
the 1st memory

access
(integer, integer) N M addr

(non-integer, integer) N M+5 addr-2

(integer, non-integer) N+5 M addr-2*pic_width

(non-integer, non-integer) N+5 M+5 addr-2*pic_width-2

For an integer-pixel block, the starting address of the i-th memory
access can be easily computed from the MV, the reference frame
index and the decoded frame resolution. Given MV(x,y) and the
reference frame index, denoted by ref_index, the starting address
of the first memory access, denoted by 1addr , can be computed

by addraddr1 and

xwidthyheightwidthindexrefaddr _

V - 314

where width and height are the decoded frame resolution. Generally
speaking, the starting address of the i-th memory access can be
obtained by

,...21,11 ,iwidthiaddraddri .

The starting address of the first memory access is slightly different
if MV points to a non-integer pixel position. If the y-direction MV
points to a non-integer position, the starting address of the first
memory access becomes

widthaddraddr 21 ,

because two additional rows in the top of the block are needed for
interpolation filters. Similarly, the starting address of the first
memory access becomes

21 addraddr ,

if the x-direction MV points to a non-integer position. The starting
address of the first memory access for different MV positions is
summarized in Table 1.

The memory access whose size is greater than the size of cache
entry can be treated as multiple memory accesses, and each of them
has the memory access size equal to the size of cache entry. If
required data cannot be found in the cache, then the number of
cache misses is added by one and then cache entries are updated.

2.3 Computation of other relevant quantities
Similar to [5], the proposed decoding complexity model consists of
a term which is proportional to the number of MVs. This quantity
can be obtained according to the inter prediction mode. For example,
P16x16 and Skip modes have only one MV but P16x8, P8x16 have
two MVs. The maximal MV number per MB is 16, which is the
case one 16x16 MB is portioned into 16 4x4 blocks.

The number of the x-direction (or the y-direction) interpolation
filters can be computed as follows. For an MxN block, the number
of the x-direction (or the y-direction) interpolation filters is NM
if only the MV along the x-direction (or the y-direction) is of subpel
accuracy. However, if both x- and y-direction MVs are of subpel
accuracy, the number of the x-direction (and the y-direction)
interpolation filters is)5)(5(NM .

3. EXPERIMENTAL MODEL VERIFICATION

We conducted experiments to verify the proposed decoding
complexity model given in (1) on the PC platform. The CPU was
Pentium mobile 1.7 GHz CPU with 512 Mb RAM and the operating
system was Windows XP. The reference JM9.4 decoder was
optimized by the Intel MMX technology. We selected Foreman and
Mobile sequences as training sequences and pre-encoded 70
training bit streams. Each bitstream file contained 270 frames.
Among them, 42 sequences were coded with the integer-pel ME
mode while 28 sequences were coded with the subpel ME mode.
The Intel Vtune performance analyzer 8.0 was used to measure the
MCP decoding complexities for all pre-encoded bit streams.

In our experiments, there were two different cache models for all
inter prediction modes. For P4x8 and P4x4 blocks, the number of
cache entries was 64 and the size of cache entry was 8 bytes. The
number of cache misses was simply the number of memory
accesses to blocks rather than P4x8 and P4x4, which is the case that
the cache size is so small such that the required data of memory
access cannot be obtained from the cache. This setting can result in

good estimation for pre-encoded bit streams as well as others. The
number of clock-ticks spent by the MCP operation was measured
by the Intel Vtune and then the number of clock-ticks was divided
by 7107.1 to get the decoding time of MCP in milli-seconds. The
proposed complexity model computed the number of cache misses,
the number of x-direction and y-direction interpolation filters as
well as the number of MVs per MB for those pre-encoded bit
streams. Finally, the information was used to train the weight
coefficients, i.e. and,,, . The constrained least square
method was used to determine weight coefficients.

TABLE II. DECODING COMPEXITY (DECODING TIME IN MILLI-SECONDS)
COMPARSION FOR CONTAINER CIF VIDEO SEQUENCE

Container
(QP)

Actual
complexity

Estimated
complexity

Error (%)

1 187.42 174.58 6.85 %
5 172.39 164.09 4.81 %

10 153.89 148.54 3.48 %
15 117.42 116.14 1.09 %
20 98.45 96.66 1.82 %
25 78.39 73.02 6.86 %
30 54.12 52.10 3.73 %
35 44.52 40.45 9.14 %

TABLE III. DECODING COMPEXITY (DECODING TIME IN MILLI-
SECONDS) COMPARSION FOR MOBILE CIF VIDEO SEQUENCE

Mobile (QP) Actual
complexity

Estimated
complexity

Error (%)

1 251.22 232.97 7.27 %
5 240.88 225.00 6.59 %

10 238.70 224.31 6.03 %
15 232.42 218.6.0 5.95 %
20 219.40 215.82 1.63 %
25 211.31 208.64 1.26 %
30 203.42 199.80 1.78 %
35 185.94 181.80 2.23 %

TABLE IV. DECODING COMPEXITY (DECODING TIME IN MILLI-
SECONDS) COMPARSION FOR SILENT CIF VIDEO SEQUENCE

Silent(QP) Actual
complexity

Estimated
complexity

Error (%)

1 197.88 187.83 5.03 %
5 197.37 191.70 2.87 %
10 183.80 176.31 4.08 %
15 128.43 139.00 8.23 %
20 116.84 127.02 8.71 %
25 103.13 113.01 9.57 %
30 93.52 101.02 7.99 %
35 81.36 89.01 9.39 %

The weight coefficients are:
510412.2 , 610861.4 ,

710675.2 , 510656.9 .

V - 315

Next, these weight coefficients trained by Foreman and Mobile
sequences were adopted by the proposed complexity model to
estimate the decoding complexities of the following test bit streams:
three CIF video sequences, Container, Mobile and Silent, and each
of them was encoded with a set of quantization parameters (QP),
QP=1, 5, 10, 15, 20, 25, 30 and 35, where the non-integer pixel ME
was enabled for these test sequences. Tables II, III and IV show the
comparisons between the estimated decoding complexity based on
the proposed complexity model and the actual decoding complexity
measured by the Intel Vtune. We see that the proposed decoding
complexity model provides good estimation results for the test bit
streams. The errors are within 10%.

4. APPLICATIONS OF PROPOSED COMPLEXITY MODEL

The application of the decoding complexity model is briefly
discussed in this section. A more thorough treatment will be given
in our future work. Consider the scenario that an H.264 encoder
generates a single bit stream for different decoding platforms
without the use of any decoding complexity model. In contrast, the
encoder may generate several bit streams for different decoding
platforms separately according to their computational powers so
that the resultant bit stream is easy to be decoded for a particular
platform. For the latter case, the decoding complexity models have
to be integrated into the H.264 encoder so that the encoder can
estimate the possible decoding complexity and then generate
decoder-friendly bit streams.

In the conventional H.264 encoder, the rate-distortion optimization
(RDO) process is used to decide the optimal inter prediction mode
that minimizes the RD cost for the MB as shown in Fig. 2 (a). It
consists of three steps. First, since different inter prediction modes
have a different number of MVs, the RDO process first finds the
best MV for a specific inter prediction mode. Second, the RDO
process performs the encoding processes, which include the spatial
domain transform, quantization and entropy encoding, and then
performs the decoding processes to get reconstructed video frame
so that the distortion and the bit rate can be obtained. Finally, the
RDO process finds the best inter prediction mode that yields the
minimal RD cost for the MB.

Since the proposed complexity model requires MV only for a
specific inter prediction mode, the estimated decoding complexity
can be computed if the weight coefficients are given. The proposed
complexity model can be integrated in Step (2) in the RDO process
as shown in Fig. 2 (b). The estimated decoding complexity can be
computed and the RDO process can skip those inter prediction
modes whose decoding complexities are higher than that can be
offered by the target decoding platform. In other words, the RDO
process shown in Fig. 2 (b) searches the best mode among a smaller
set of inter prediction modes whose decoding complexities are less
than the decoding complexity constraint. As a result, the RDO
process with the decoding complexity model can select the best
inter prediction mode that minimizes the RD cost as well as meets
the decoding complexity constraint for the target platform. Another
advantage for the RDO process shown in Fig. 2 (b) is that the
encoding complexity can be saved since the encoder does not have
to perform the encoding and the decoding processes for all inter
prediction modes. Please note that the weight coefficients are
different among different platforms and, therefore, they have to be
measured for the target decoding platform first so that the RDO
process with the decoding complexity model can estimate the
decoding complexity for a given inter prediction mode and MV and
then select the optimal inter prediction mode for the MB.

Figure 2. RDO process and RDO process with integrated decoding
complexity model.

5. CONCLUSION

The complexity model for motion compensation in the H.264/AVC
decoder was examined in this work. This model helps the encoder
select proper inter prediction modes and then generate a video bit
stream that is most suitable for a particular platform with certain
hardware constraint. As a result, the coded bit stream can balance
the tradeoff between the RD requirement as well as the
computational power of the target decoding platform. The proposed
decoding complexity model was verified experimentally. We see
that the model provides a fairly good estimation results for various
test bit streams. Finally, possible applications of the decoding
complexity model, including its integration with the H.264 encoder,
were discussed.

6. REFERENCES

[1] T. Wiegand, G. J. Sullivan, G. Bjontegaard and A. Luthra,” Overview
of the H.264/AVC coding standard,” IEEE Trans. Circuits and
Systems for Video Technology, vol. 13, no. 7, pp. 560-576, July 2003.

[2] “Information technology – coding of audiovisual objects – Part 2:
Visual,” Dec. 1999.

[3] J. Valentim, P. Nunes and F. Pereia, “An alternative complexity
model for the MPEG-4 video verifier mechanism,” IEEE
International Conference on Image Processing 2001, pp. 461-464.

[4] J. Valentim, P. Nunes and F. Pereia, “Evaluating MPEG-4 video
decoding complexity for an alternative video complexity verifier
model,” IEEE Trans. on Circuits and Systems for Video Technology,
pp. 1034-1044, vol. 12, no. 11, Dec. 2002.

[5] M. van der Schaar and Y. Andreopoulos, “Rate-distortion-complexity
modeling for network and receiver aware adaptation,” IEEE Trans. on
Multimedia, pp. 471-479, vol. 7, no. 3, June 2005.

[6] M. Horowitz, A. Joch, F. Kossentini and A. Hallapuro, “H.264/AVC
baseline profile decoder complexity analysis,” IEEE Trans. Circuits
and Systems for Video Technology, vol. 13, no. 7, pp.704-716, July
2003.

V - 316

