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ABSTRACT
 

In this paper, we propose a fast reverse motion estimation 
algorithm with efficient mode decision for reverse 
transcoding of H.264 bitstream. By analyzing the motion 
vectors and modes decoded from the forward bitstream, the 
best mode and motion vector for each backward transcoded 
macroblock are estimated. A remarkable reduction of 
computational complexity involved in reverse motion 
estimation can be achieved by the proposed algorithm with 
only negligible impact on the rate-distortion performance. 
 

Index Terms: Video cassette recording (VCR), transcoding, 
H.264 video, reverse motion estimation. 
 

1. INTRODUCTION 
 

In order to provide fast and user-friendly browsing of video 
contents, some research works have been investigated to 
implement the full video cassette recording (VCR) 
functionality in MPEG video system [1-4] recently.  
Reverse playback is one of the VCR functions. However, 
the motion-compensated predictive technique that is 
adopted in various standards for compression severely 
complicates this operation. One conventional approach for 
performing reverse playback on compressed video is to 
decode the compressed video, store all uncompressed 
frames in the decoder, and display them in reverse order. 
This approach requires a significant amount of memory in 
playback devices. In [1-2], a reverse-play transcoder has 
been proposed to convert I–P frames into another I–P 
bitstream with reverse order in the server. When a playback 
device decodes this reverse-encoded bitstream, reverse 
playback can be achieved. For the dual bitstream system 
that was proposed in [3] for providing the full VCR 
functionality, transcoding the existing bitstream to a new 
one in reverse direction is also required. To expedite the 
reverse transcoding process, a method of estimating the 
reverse motion vectors for the new I–P bitstream based on 
the forward motion vectors of the original I–P bitstream has 
been suggested in [2]. Nowadays, the H.264 standard [5] 
achieves considerably higher coding efficiency than the 
previous standards. It is also highly desirable to provide 
reverse playback in H.264. However, the variable block size 

motion estimation adopted in H.264 introduces mode 
decision section in the encoding process and this further 
complicates the process of reverse transcoding.  
 

In this paper, we exploit the relationship among various 
modes and motion vectors in the original forward bitstream 
to speed up the reverse motion estimation process. The 
paper is organized as follows. Section 2 describes the 
reverse transcoding process of H.264 bitstream. Section 3 
illustrates the proposed method. Simulation results are 
presented in Section 4 and finally some conclusions are 
given in Section 5. 
 
2. REVERSE TRANSCODING OF H.264 BITSTREAM 
 

Figure 1 shows a scenario in which frame n is backward 
encoded with frame n+1. An important problem that arises 
in this reverse transcoding is to calculate the reverse motion 
vector (RMV), which is extremely computational expensive. 
In particular, the H.264 supports motion estimation using 
different block sizes. Each 16×16 pixel macroblock (MB) 
can be divided into MB partitions of sizes 16×8, 8×16, or 
8×8. In each 8×8 partition, it can be further divided into 
sub-MB partitions of sizes 8×4, 4×8, or 4×4. These 
variable block sizes provide different modes that are 
actually arranged into two-level hierarchy. The first level 
(L1) contains modes of 16×16, 16×8 and 8×16 while the 
second level (L2) is defined as P8×8 mode, of which each 
8×8 block can be one of submodes such as 8×8, 8×4, 4×8, 
or 4×4. To perform reverse transcoding in the H.264, 
reverse motion estimation is firstly performed for all modes 
and submodes independently by minimizing the cost Jmotion. 

)(),(),( PMVRMVRrsSADRMVJ motionmotionmotionmotion   (1) 
where PMV is the motion vector used for prediction, motion 
is the Lagrangian multiplier for reverse motion estimation, 

)( PMVRMVRmotion  is the estimated number of bits for coding 
RMV, and SAD is sum of absolute differences between the 
original block s and its reference block r. 
 

After motion estimation for each mode, a rate-distortion 
(RD) optimization technique is used to get the best reverse 
mode and its general equation is given by: 
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where mode is the Lagrangian multiplier for mode decision, 
RMODE is one of the candidate modes during reverse 
motion estimation, SSD is sum of the squared differences 
between s and its reconstruction block c, and 

 represents the number of coding bits 
associated with the chosen mode. To compute Jmode, forward 
and inverse integer transform, and variable length coding 
are performed. The mode having the minimal cost is 
decided as the best reverse mode. Submode decision for 
P8×8 is also carried out by using (2) with RMODE 
indicating a mode chosen from 8×8, 8×4, 4×8, and 4×4. 
The submode with the minimal cost is selected as the best 
reverse submode in this P8×8 mode. By using brute-force 
search, it can guarantee to obtain the best RD performance, 
but the calculations of Jmotion and Jmode incur a large amount 
of computational effort. In MPEG-2/4, RMVs can be 
obtained by negating the horizontal and vertical components 
of the corresponding forward motion vectors in the same 
spatial location of frame n+1 [1-2]. This idea can be further 
extended to mode decision in H.264 in which the reverse 
modes of frame n can be directly copied from the modes of 
frame n+1 in the corresponding spatial location. This is 
called “in-place” reverse motion estimation. However, a 
major disadvantage of this method is that it always obtains 
incorrect modes in the case of a scene with large motion 
activities or complicated spatial details. 

),,( RMODEcsRmode

 
3. PROPOSED TRANSCODING METHOD 

In Figure 1, we assume that macroblock k of frame n, , 
is backward encoded using frame n+1 as the reference. Let 
us represent the reverse mode and the set of RMVs of  
as  and  respectively. For the variable block 
size motion estimation, each  contains a number of 
motion vectors, i.e., ={ }, 
where m is the total number of partitions in . Besides, if 

is P8×8 mode, each of the four 8×8 blocks has its 
submode . In the forward bitstream, the sets of 
forward motion vectors of and are denoted by 

={ } and 
={ } respectively. Their 

corresponding modes (submodes) are  
( ) and  ( ). To expedite 
mode decision of , our proposed algorithm exploits 
the relationship among , ,  and 
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In a natural video sequence, the homogeneous areas such as 
the background are always coded using 16×16 mode. On 
the contrary, a smaller partition is chosen in the non-
homogeneous areas with strong edges. In general,  
provides the spatial partition of . Therefore, 

can directly use . However,  only 
reflects various motions of all objects inside k

nMB  by using 
frame n-1 as the reference. But, in choosing the best 

, the reference frame is frame n+1. In the forward 
bitstream,  together with  of (the 
corresponding spatial location of  in frame n+1) can 
indicate the correlation between modes used in frame n and 
frame n+1. Thus an improved way of determining k

nRMODE  
can be achieved by adaptively choosing FMODE  and 
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Generally, the motion activity of , , provides the 
correlation between  and  and it is 
defined as: 
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where  and  are the horizontal and vertical 
components of . If  is the 16×16 mode and 
its  has a small value, it is most likely that  is 
also set to the 16×16 mode due to its temporal stationary. 
Besides,  is estimated by . On the other hand, 
a large value of  signifies that  and  
have only small correlation. In this case, only  can 
provide the best estimate of . In the actual situation, 

 solely represents the motion between frame n and 
frame n-1. While  refers to the motion between frame 
n and frame n+1, cannot be directly used, but be 
taken as a good predictor by considering some kind of 
temporal smoothness of the motion trajectory. For  
with medium value, either  or  is 
possible to be selected. If they are the same and belong to 
L1 (16×16, 16×8 or 8×16), there is very high chance that 
this mode can be used in . Otherwise, if both 

 and belong to L2, the motion activity 
and spatial structure of  is complex. It is necessary to 
select k

n  of each 8×8 partition from  
and  by calculating their Jmode. The algorithm 
is illustrated as follows: 
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Step 1: Compute the motion activity of , , using 
(3). 

k
nMB 1

k
nMA 1

Step 2: Compare with the threshold Thigh. If 
Thigh, choose  as the final mode of . 

Set the initial  to , for i=1, 2,…, m, 
followed by a refined motion estimation with a significantly 
reduced search area to obtain the final i .  
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k
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Step 3: Compare with the threshold Tlow (Tlow < Thigh). 
If Tlow and =16×16 mode, set  and 

 to 16×16 mode and  respectively. 
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and  based on the following three 
conditions. 
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C1: If =  and they both belong to L1, set 
 to  (= ). Perform motion vector 

refinement by using both and as the initial 
vectors and the one with smallest Jmotion is selected as . 
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C2: If =  and they both belong to L2, 
set to  (= ). 
Determine  and  according to the 
following steps: 
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Perform motion vector refinement by using both 
ik

nFMV , and ik
nFMV ,

1 as the initial vectors for each 8×8 
sub-MB partition. 
Choose the best submode of k

nRSUBMODE from 
k
n  and k

n  by calculating Jmode in 
(2) using their refined motion vectors, and set k

nRMV to 
the corresponding refined motion vectors. 

FSUBMODE FSUBMODE 1

C3: If , determine  with 
possible  and  as follows: 
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1 as the initial vectors for each MB partition or 
sub-MB partition. 
For both k

nFMODE 1 and k
nFMODE , calculate Jmode by 

using their refined motion vectors. If one of them is 
P8×8 mode, reckon its corresponding submode in 
computing Jmode. 
Select the best mode with smaller Jmode as k

nRMODE  and 
set the corresponding refined motion vectors as k

nRMV . If 
k
nRMODE  is P8×8 mode, set also k

nRSUBMODE to the 
corresponding submodes ( k

n or k
n ). FSUBMODE 1 FSUBMODE

 

The motion estimation and mode decision process can be 
summarized by the flowchart in Figure 2. After that, based 
on the resulted motion vectors of , a merging process 
could be taken to finish the reverse mode decision. The 
principle is simple but efficient. If there exists a common 
motion vector among any neighboring MB partitions (or 
sub-MB partitions), they can possibly be merged to a larger 
MB partition (or sub-MB partition) with that common 
motion vector. 

k
nRMV

 
4. SIMULATION RESULTS 

 

The proposed reverse motion estimation algorithm is 
implemented based on the JVT JM 9.2 encoder [5] and was 
tested from five video sequences (Foreman QCIF, Carphone 
QCIF, Salesman CIF, Tabletennis CIF, and Flower CIF) 
with 5 quantization parameters, i.e., QP=20, 24, 28, 32, and 
36. In our proposed algorithm, Thigh and Tlow were set to 256 
and 32 respectively, and a search area of 1 pixel was used 
for motion vector refinement. The results are tabulated in 

. In the table, PSNR, bitrate, Jmotion and Jmode 

represent a PSNR change, a bitrate change in percentage, 
percentage changes in the numbers of Jmotion and Jmode 
calculations when compared to the “brute-force” algorithm 
with a search range of 8 pixels, respectively. The positive 
values mean increments whereas negative values mean 
decrements. From the results in , it is observed that 
the proposed algorithm can substantially reduce Jmotion and 

Jmode over 99% and 83% respectively. Note that the “in-
place” algorithm [1-2] does not need to compute Jmotion and 

Jmode since it directly reuses the modes and motion vectors 
in the forward bitstream. However, the RD performance of 
the “in-place” algorithm is greatly deteriorated as depicted 
in Figure 3 where the RD curve of the “Foreman” sequence 
is shown. On contrast, the RD performance of the proposed 
algorithm can achieve similar result to the “brute-force” 
algorithm.  also shows that the proposed algorithm 
has consistent gain in coding efficiency for all video 
sequences as compared with the “in-place” algorithm. On 
average, the proposed algorithm can achieve tremendous 
speed up at a cost of 0.14 dB PSNR drop and 6.44% bitrate 
increase compared to the “brute-force” algorithm. 

Table 1

Table 1

Table 1

 
5. CONCLUSION 

 

A fast reverse motion estimation and mode decision 
algorithm for H.264 is proposed. The motivation is to 
exploit the relationship among various modes and motion 
vectors in the original forward bitstream. Experimental 
results show that the proposed algorithm can achieve 
remarkable speed up while maintaining a similar RD 
performance. This reduction in computational complexity 
helps the real-time VCR implementation of H.264 in reverse 
transcoding. 
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Table 1. Performance comparisons. 
In-place Proposed  PSNR bitrate PSNR bitrate Jmotion Jmode

Foreman –0.50 +31.9% –0.18 +6.7% –99.4% –88.0%
Carphone –0.67 +40.8% –0.24 +9.2% –99.5% –90.1%
Salesman –0.23 +19.9% –0.07 +5.1% –99.8% –96.3%
Tabletennis –0.37 +27.7% –0.17 +8.5% –99.5% –90.7%
Flower –0.20 +12.5% –0.06 +2.7% –99.3% –83.1%
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Figure 2. Flowchart of the proposed algorithm. 
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