
EFFICIENT MOTION ESTIMATION IN H.264 REVERSE TRANSCODING

Chang-Hong Fu, Yui-Lam Chan and Wan-Chi Siu

Centre for Multimedia Signal Processing
Department of Electronic and Information Engineering

The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong

ABSTRACT

In this paper, we propose a fast reverse motion estimation
algorithm with efficient mode decision for reverse
transcoding of H.264 bitstream. By analyzing the motion
vectors and modes decoded from the forward bitstream, the
best mode and motion vector for each backward transcoded
macroblock are estimated. A remarkable reduction of
computational complexity involved in reverse motion
estimation can be achieved by the proposed algorithm with
only negligible impact on the rate-distortion performance.

Index Terms: Video cassette recording (VCR), transcoding,
H.264 video, reverse motion estimation.

1. INTRODUCTION

In order to provide fast and user-friendly browsing of video
contents, some research works have been investigated to
implement the full video cassette recording (VCR)
functionality in MPEG video system [1-4] recently.
Reverse playback is one of the VCR functions. However,
the motion-compensated predictive technique that is
adopted in various standards for compression severely
complicates this operation. One conventional approach for
performing reverse playback on compressed video is to
decode the compressed video, store all uncompressed
frames in the decoder, and display them in reverse order.
This approach requires a significant amount of memory in
playback devices. In [1-2], a reverse-play transcoder has
been proposed to convert I–P frames into another I–P
bitstream with reverse order in the server. When a playback
device decodes this reverse-encoded bitstream, reverse
playback can be achieved. For the dual bitstream system
that was proposed in [3] for providing the full VCR
functionality, transcoding the existing bitstream to a new
one in reverse direction is also required. To expedite the
reverse transcoding process, a method of estimating the
reverse motion vectors for the new I–P bitstream based on
the forward motion vectors of the original I–P bitstream has
been suggested in [2]. Nowadays, the H.264 standard [5]
achieves considerably higher coding efficiency than the
previous standards. It is also highly desirable to provide
reverse playback in H.264. However, the variable block size

motion estimation adopted in H.264 introduces mode
decision section in the encoding process and this further
complicates the process of reverse transcoding.

In this paper, we exploit the relationship among various
modes and motion vectors in the original forward bitstream
to speed up the reverse motion estimation process. The
paper is organized as follows. Section 2 describes the
reverse transcoding process of H.264 bitstream. Section 3
illustrates the proposed method. Simulation results are
presented in Section 4 and finally some conclusions are
given in Section 5.

2. REVERSE TRANSCODING OF H.264 BITSTREAM

Figure 1 shows a scenario in which frame n is backward
encoded with frame n+1. An important problem that arises
in this reverse transcoding is to calculate the reverse motion
vector (RMV), which is extremely computational expensive.
In particular, the H.264 supports motion estimation using
different block sizes. Each 16×16 pixel macroblock (MB)
can be divided into MB partitions of sizes 16×8, 8×16, or
8×8. In each 8×8 partition, it can be further divided into
sub-MB partitions of sizes 8×4, 4×8, or 4×4. These
variable block sizes provide different modes that are
actually arranged into two-level hierarchy. The first level
(L1) contains modes of 16×16, 16×8 and 8×16 while the
second level (L2) is defined as P8×8 mode, of which each
8×8 block can be one of submodes such as 8×8, 8×4, 4×8,
or 4×4. To perform reverse transcoding in the H.264,
reverse motion estimation is firstly performed for all modes
and submodes independently by minimizing the cost Jmotion.

)(),(),(PMVRMVRrsSADRMVJ motionmotionmotionmotion (1)
where PMV is the motion vector used for prediction, motion
is the Lagrangian multiplier for reverse motion estimation,

)(PMVRMVRmotion is the estimated number of bits for coding
RMV, and SAD is sum of absolute differences between the
original block s and its reference block r.

After motion estimation for each mode, a rate-distortion
(RD) optimization technique is used to get the best reverse
mode and its general equation is given by:

V - 3171-4244-1437-7/07/$20.00 ©2007 IEEE ICIP 2007

),,(),,(
),,,(

modemode

modemode

RMODEcsRRMODEcsSSD
RMODEcsJ (2)

where mode is the Lagrangian multiplier for mode decision,
RMODE is one of the candidate modes during reverse
motion estimation, SSD is sum of the squared differences
between s and its reconstruction block c, and

 represents the number of coding bits
associated with the chosen mode. To compute Jmode, forward
and inverse integer transform, and variable length coding
are performed. The mode having the minimal cost is
decided as the best reverse mode. Submode decision for
P8×8 is also carried out by using (2) with RMODE
indicating a mode chosen from 8×8, 8×4, 4×8, and 4×4.
The submode with the minimal cost is selected as the best
reverse submode in this P8×8 mode. By using brute-force
search, it can guarantee to obtain the best RD performance,
but the calculations of Jmotion and Jmode incur a large amount
of computational effort. In MPEG-2/4, RMVs can be
obtained by negating the horizontal and vertical components
of the corresponding forward motion vectors in the same
spatial location of frame n+1 [1-2]. This idea can be further
extended to mode decision in H.264 in which the reverse
modes of frame n can be directly copied from the modes of
frame n+1 in the corresponding spatial location. This is
called “in-place” reverse motion estimation. However, a
major disadvantage of this method is that it always obtains
incorrect modes in the case of a scene with large motion
activities or complicated spatial details.

),,(RMODEcsRmode

3. PROPOSED TRANSCODING METHOD

In Figure 1, we assume that macroblock k of frame n, ,
is backward encoded using frame n+1 as the reference. Let
us represent the reverse mode and the set of RMVs of
as and respectively. For the variable block
size motion estimation, each contains a number of
motion vectors, i.e., ={ },
where m is the total number of partitions in . Besides, if

is P8×8 mode, each of the four 8×8 blocks has its
submode . In the forward bitstream, the sets of
forward motion vectors of and are denoted by

={ } and
={ } respectively. Their

corresponding modes (submodes) are
() and (). To expedite
mode decision of , our proposed algorithm exploits
the relationship among , , and

.

k
nMB

k
nMB

k
nRMODE k

nRMV
k

nRMV
k

nRMV mk
n

k
n

k
n RMVRMVRMV ,2,1, ...,,

k
nMB

k
nRMODE

k
nRSUBMODE

k
nMB k

nMB 1
k

nFMV mk
n

k
n

k
n FMVFMVFMV ,2,1, ...,,

k
nFMV 1

mk
n

k
n

k
n FMVFMVFMV ,

1
2,
1

1,
1 ...,,

k
nFMODE

k
nFSUBMODE k

nFMODE 1
k
nFSUBMODE 1

k
nRMODE

k
nFMV k

nFMV 1
k
nFMODE

k
nFMODE 1

In a natural video sequence, the homogeneous areas such as
the background are always coded using 16×16 mode. On
the contrary, a smaller partition is chosen in the non-
homogeneous areas with strong edges. In general,
provides the spatial partition of . Therefore,

can directly use . However, only
reflects various motions of all objects inside k

nMB by using
frame n-1 as the reference. But, in choosing the best

, the reference frame is frame n+1. In the forward
bitstream, together with of (the
corresponding spatial location of in frame n+1) can
indicate the correlation between modes used in frame n and
frame n+1. Thus an improved way of determining k

nRMODE
can be achieved by adaptively choosing FMODE and

.

k
nFMODE

k
nMB

k
nRMODE k

nFMODE k
nFMODE

k
nRMODE

k
nFMODE 1

k
nFMV 1

k
nMB 1

k
nMB

k
n

k
nFMODE 1

Generally, the motion activity of , , provides the
correlation between and and it is
defined as:

k
nMB 1

k
nMA 1

k
nRMODE k

n 1FMODE

 1
1

,
1

,
11

m

i

ik
n

ik
n

k
n vu

m
MA (3)

where and are the horizontal and vertical
components of . If is the 16×16 mode and
its has a small value, it is most likely that is
also set to the 16×16 mode due to its temporal stationary.
Besides, is estimated by . On the other hand,
a large value of signifies that and
have only small correlation. In this case, only can
provide the best estimate of . In the actual situation,

 solely represents the motion between frame n and
frame n-1. While refers to the motion between frame
n and frame n+1, cannot be directly used, but be
taken as a good predictor by considering some kind of
temporal smoothness of the motion trajectory. For
with medium value, either or is
possible to be selected. If they are the same and belong to
L1 (16×16, 16×8 or 8×16), there is very high chance that
this mode can be used in . Otherwise, if both

 and belong to L2, the motion activity
and spatial structure of is complex. It is necessary to
select k

n of each 8×8 partition from
and by calculating their Jmode. The algorithm
is illustrated as follows:

ik
nu ,

1
ik

nv ,
1
ik

nFMV ,
1

k
nFMODE 1

k
nMA 1

k
nRMODE

k
nRMV k

nFMV 1
k
nMA 1

k
nRMODE k

nFMODE 1
k
nFMODE

k
nRMODE

k
nFMV

k
nRMV

k
nFMV

k
nMA 1

k
nFMODE k

nFMODE 1

k
nRMODE

k
nFMODE k

nFMODE 1
k
nMB

RSUBMODE k
nFSUBMODE

k
nFSUBMODE 1

Step 1: Compute the motion activity of , , using
(3).

k
nMB 1

k
nMA 1

Step 2: Compare with the threshold Thigh. If
Thigh, choose as the final mode of .

Set the initial to , for i=1, 2,…, m,
followed by a refined motion estimation with a significantly
reduced search area to obtain the final i .

k
nMA 1

k
nMA 1

k
nFMODE k

nRMODE
ik

nRMV , ik
nFMV ,

k
nRMV ,

Step 3: Compare with the threshold Tlow (Tlow < Thigh).
If Tlow and =16×16 mode, set and

 to 16×16 mode and respectively.

k
nMA 1

k
nMA 1

k
nFMODE 1

k
nRMODE

1,k
nRMV 1,

1
k

nFMV
Step 4: Otherwise, choose the best of from

and based on the following three
conditions.

k
nRMODE

k
nFMODE 1

k
nFMODE

V - 318

C1: If = and they both belong to L1, set
 to (=). Perform motion vector

refinement by using both and as the initial
vectors and the one with smallest Jmotion is selected as .

k
nFMODE k

nFMODE 1
k
nRMODE k

nFMODE k
nFMODE 1

ik
nFMV , ik

nFMV ,
1

ik
nRMV ,

C2: If = and they both belong to L2,
set to (=).
Determine and according to the
following steps:

k
nFMODE k

nFMODE 1
k
nRMODE k

nFMODE k
nFMODE 1

k
nRSUBMODE k

nRMV

Perform motion vector refinement by using both
ik

nFMV , and ik
nFMV ,

1 as the initial vectors for each 8×8
sub-MB partition.
Choose the best submode of k

nRSUBMODE from
k
n and k

n by calculating Jmode in
(2) using their refined motion vectors, and set k

nRMV to
the corresponding refined motion vectors.

FSUBMODE FSUBMODE 1

C3: If , determine with
possible and as follows:

k
nFMODE k

nFMODE 1
k
nRMODE

k
nRSUBMODE k

nRMV

Refine motion vectors by using both ik
nFMV , and

ik
nFMV ,

1 as the initial vectors for each MB partition or
sub-MB partition.
For both k

nFMODE 1 and k
nFMODE , calculate Jmode by

using their refined motion vectors. If one of them is
P8×8 mode, reckon its corresponding submode in
computing Jmode.
Select the best mode with smaller Jmode as k

nRMODE and
set the corresponding refined motion vectors as k

nRMV . If
k
nRMODE is P8×8 mode, set also k

nRSUBMODE to the
corresponding submodes (k

n or k
n). FSUBMODE 1 FSUBMODE

The motion estimation and mode decision process can be
summarized by the flowchart in Figure 2. After that, based
on the resulted motion vectors of , a merging process
could be taken to finish the reverse mode decision. The
principle is simple but efficient. If there exists a common
motion vector among any neighboring MB partitions (or
sub-MB partitions), they can possibly be merged to a larger
MB partition (or sub-MB partition) with that common
motion vector.

k
nRMV

4. SIMULATION RESULTS

The proposed reverse motion estimation algorithm is
implemented based on the JVT JM 9.2 encoder [5] and was
tested from five video sequences (Foreman QCIF, Carphone
QCIF, Salesman CIF, Tabletennis CIF, and Flower CIF)
with 5 quantization parameters, i.e., QP=20, 24, 28, 32, and
36. In our proposed algorithm, Thigh and Tlow were set to 256
and 32 respectively, and a search area of 1 pixel was used
for motion vector refinement. The results are tabulated in

. In the table, PSNR, bitrate, Jmotion and Jmode

represent a PSNR change, a bitrate change in percentage,
percentage changes in the numbers of Jmotion and Jmode
calculations when compared to the “brute-force” algorithm
with a search range of 8 pixels, respectively. The positive
values mean increments whereas negative values mean
decrements. From the results in , it is observed that
the proposed algorithm can substantially reduce Jmotion and

Jmode over 99% and 83% respectively. Note that the “in-
place” algorithm [1-2] does not need to compute Jmotion and

Jmode since it directly reuses the modes and motion vectors
in the forward bitstream. However, the RD performance of
the “in-place” algorithm is greatly deteriorated as depicted
in Figure 3 where the RD curve of the “Foreman” sequence
is shown. On contrast, the RD performance of the proposed
algorithm can achieve similar result to the “brute-force”
algorithm. also shows that the proposed algorithm
has consistent gain in coding efficiency for all video
sequences as compared with the “in-place” algorithm. On
average, the proposed algorithm can achieve tremendous
speed up at a cost of 0.14 dB PSNR drop and 6.44% bitrate
increase compared to the “brute-force” algorithm.

Table 1

Table 1

Table 1

5. CONCLUSION

A fast reverse motion estimation and mode decision
algorithm for H.264 is proposed. The motivation is to
exploit the relationship among various modes and motion
vectors in the original forward bitstream. Experimental
results show that the proposed algorithm can achieve
remarkable speed up while maintaining a similar RD
performance. This reduction in computational complexity
helps the real-time VCR implementation of H.264 in reverse
transcoding.

6. ACKNOWLEDGEMENTS

The work is partially supported by the Centre for
Multimedia Signal Processing, EIE, PolyU and a grant from
the Research Grants Council of the Hong Kong Special
Administrative Region, China (PolyU 5123/05E). C. H. Fu
acknowledges the research studentships provided by the
University.

7. REFERENCES

[1] S. J. Wee and B. Vasudev, “Compressed-domain reverse play
of MPEG video streams,” in Proc. SPIE Conf. Multimedia
Systems and Applications, pp. 237-248, November 1998.
[2] S. J. Wee, “Reversing motion vector fields,” in Proc. IEEE
International on Conference Image Processing 1998 (ICIP98), pp.
209-212, October 1998.
[3] C. W. Lin, J. Zhou, J. Youn, and M. T. Sun, “MPEG video
streaming with VCR functionality,” IEEE Transactions on Circuits
and Systems for Video Technology, Vol. 11, No. 3, pp. 415-425,
March 2001.

V - 319

[4] Chang-Hong Fu, Yui-Lam Chan, and Wan-Chi Siu, “Efficient
Reverse-Play Algorithms for MPEG Video With VCR Support,”
IEEE Trans. On Circuits and Systems for Video Technology, Vol.
16, No.1, pp.19-30, January 2006. k

nMB k
nMB 1

k
nMB 1

frame n-1

k
nFMV 1

frame n frame n+1

k
nFMV

k
nFMODE 1

k
nFMODE

k
nRMV

k
nRMODE

Figure 1. Reverse transcoding of . k

nMB

[5] JVT Reference Software JM9.2 downloaded from
http://iphome.hhi.de/suehring/tml/download/

28

29

30

31

32

33

34

35

0 50 100 150 200 250 300 350 400
Bitrate(kbits/sec)

PS
N

R
(d

B
)

brute-force

in-place

proposed

Figure 3. RD curves for the “Foreman” sequence.

Table 1. Performance comparisons.
In-place Proposed PSNR bitrate PSNR bitrate Jmotion Jmode

Foreman –0.50 +31.9% –0.18 +6.7% –99.4% –88.0%
Carphone –0.67 +40.8% –0.24 +9.2% –99.5% –90.1%
Salesman –0.23 +19.9% –0.07 +5.1% –99.8% –96.3%
Tabletennis –0.37 +27.7% –0.17 +8.5% –99.5% –90.7%
Flower –0.20 +12.5% –0.06 +2.7% –99.3% –83.1%

FMODE
= FMODE ? RMODE = FMODE

FMODE =P8x8? RSUBMODE
=FSUBMODE

RMV = -FMV’

Costn+1 < Costn?

Costn+1=Jmode(FSUBMODE ,-FMV’)
&

Costn=Jmode(FSUBMODE , -FMV’)

Costn+1=Jmotion(-FMV’)
&

Costn=Jmotion(-FMV’)

Costn+1 < Costn?Costn+1 < Costn?

Costn+1=Jmode(FMODE , FSUBMODE , -FMV’)
&

Costn=Jmode(FMODE , FSUBMODE , -FMV?)

RMODE =FMODE
(RSUBMODE

=FSUBMODE)
RMV = -FMV’

Yes

No

Yes

Yes Yes YesNo No No

No

Compute the motion activity of
MB : MA

Tlow<MA < Thigh ?

RMODE =FMODE
(RSUBMODE =FSUBMODE)

Refine -FMV to RMV by Jmotion

RMODE =16x16 mode
RMV = -FMV

MA >Thigh

MA <Tlow&

Yes

No

FMODE =16x16 mode

For MB

RMODE =FMODE
(RSUBMODE

=FSUBMODE)
RMV = -FMV’

RSUBMODE
=FSUBMODE

RMV = -FMV’

RSUBMODE
=FSUBMODE

RMV = -FMV’
RMV = -FMV’

n
k

n
k

n+1
k

n+1
k

n+1
k

n+1
k

n+1
k

n
k

n
k

n
k

n
k

n
k

n+1
k

n+1
k n

k
n
k

n
k

n
k,i

n
k,i

n
k,1

n+1
k,1

n
k

n+1
k,i

n
k,i

n
k,i

n+1
k,i

n+1
k,i

n
k,i

n+1
k

n+1
k

n+1
k

n+1
k,i

n
k

n
k

n
k,i

n+1
k,i

n
k,i

n+1
k

n
k

n
k

n+1
k

n+1
k,i

n
k

n
k

n
k

n
k

n
k

n+1
k

n+1
k,i

n
k

n
k

n
k,i

n
k,i

n
k

n
k,i

n
k,i

n
k,i

n
k,i

n
k,i

n
k,i

n+1
k,i

n
k,i

n
k

C3 C2 C1

Motion Refinement by cost function Jmotion

 Refine -FMV to -FMV’ & -FMV to -FMV’ respectively

Figure 2. Flowchart of the proposed algorithm.

V - 320

