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ABSTRACT
The main advantage of using the Hough Transform to detect ellipses
is its robustness against missing data points. However, the storage
and computational requirements of the Hough Transform preclude
practical applications. Although there are many modifications to
the Hough Transform, these modifications still demand significant
storage requirement. In this paper, we present a novel ellipse detec-
tion algorithm which retains the original advantages of the Hough
Transform while minimizing the storage and computation complex-
ity. More specifically, we use an accumulator that is only one dimen-
sional. As such, our algorithm is more effective in terms of storage
requirement. In addition, our algorithm can be easily parallelized to
achieve good execution time. Experimental results on both synthetic
and real images demonstrate the robustness and effectiveness of our
algorithm in which both complete and incomplete ellipses can be
extracted.

Index Terms— Ellipse detection, Hough transform, Shape recog-
nition.

1. INTRODUCTION

Extracting elliptical objects from digital images is of fundamental
importance in shape recognition [1]. One of the best known meth-
ods in extracting ellipses from images is the Hough Transform (HT).
The key concept behind the standard HT in extracting ellipses is to
define a mapping between the two dimensional image space and the
five dimensional parameter space. These five parameters are the co-
ordinates of the center point of the ellipse, the lengths of the major
and minor axes of the ellipse and the orientation of the major axis
with respect to the x-axis. Each data point of the image space is map
onto specific cells of the five dimensional accumulator, whereby the
associated parameters of the specific cells are chosen such that the
curve defined by these parameters passes through the data point. In
this aspect, the data points can be seen as voting for the parameters
of the ellipses found in the image. The votes in the cells are then ac-
cumulated. After all data points of the image have been considered,
the local maxima of the accumulator correspond to the parameters
of the ellipses that are detected in the image.

The main advantage of the HT in extracting ellipse is its robust-
ness against discontinuous or missing data points. This is because
the HT does not require the connectivity of all the contour points
of an ellipse. Owing to this, the HT is well suited to detect ellipses
in the presence of moderate noise or in images having a cluttered
background. Unfortunately, the requirement for the five dimensional
accumulator places huge computational and storage constrains and
hence precludes practical applications. In light of this, many algo-
rithms have been developed to retain the original advantages of the

HT while minimizing the computational complexity. For example,
S. Tsuji and F. Matsumoto [2] first decomposed the five dimensional
parameter space and then used the symmetrical properties of the el-
lipse to reduce the computation complexity. More recently, N. Guil
and E. L. Zapata [3] proposed the Fast Ellipse Hough Transform
which achieved better execution time. However, these methods re-
quire accurate calculation of the gradients and tangents of the edge
pixels. As such, the detection accuracy of ellipses using such meth-
ods will be adversely affected by the image noise.

To avoid the use of the gradient and tangent information, Xu et
al. [4] developed the Randomized Hough Transform. In this method,
three non collinear edge pixels are randomly selected and then used
to vote on the parameters of the ellipse. This method was further
extended in [5] in which four random pixels are selected at each it-
eration. Unfortunately, the accuracy and speed of these randomized
HT algorithms is dependant on the number of edge pixels. Further-
more, there is an additional difficulty in the accurate estimation of
the probability which is inherent in these two methods.

Many other methods which exploit the geometrical symmetry of
the ellipse have also been proposed to avoid the calculation of the
gradient and tangent of the edge pixels. For example in [6], C. T.
Ho and L. H. Chen used the global geometric symmetry to locate
all possible parameters of the ellipses. This idea was extended in
[7] in which the parameter space is reduced by using two symmetric
axes. Although these methods are able to extract ellipses accurately,
they still require high computational complexity. Furthermore, de-
spite using the geometric properties of the ellipse, these methods still
demand at least a two dimensional accumulator.

The key contribution of this paper is to present a novel and ro-
bust ellipse detection algorithm which uses an accumulator that is
only one dimensional. As a result of this reduction in accumulator
size, our algorithm is more efficient in term of storage requirement
than the current generation of HT based ellipse detection algorithms.
Another distinctive aspect of our algorithm is that we avoid the cal-
culation of the gradients and tangents of the edge pixels. Thus our
algorithm is more robust to image noise. As an initial preview, we
also point out here that our algorithm can be easily parallelized to
achieve good execution time. We are aware of only one other ellipse
detection algorithm that uses an accumulator that is one dimensional
[8]. However, we point out here that there are marked differences be-
tween our work and theirs. More specifically, we exploit the foci of
an ellipse to derive precisely the parameters of a hypothetical ellipse.
On the other hand, in [8], Y. Xie and Q. Ji estimate the half-length of
the minor axis of a hypothetical ellipse to approximate the other pa-
rameters of the ellipse. In this aspect, the parameters of the ellipses
are more accurately calculated by our method. In addition, in this
work, we determine the validity of a hypothetical ellipse by relating
the circumference of the ellipse to the number of pixels that vote for
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the ellipse. In contrast, Y. Xie and Q. Ji used the local maxima of the
accumulator to determine a hypothetical ellipse’s validity. Finally,
experimental results on both synthetic and real images demonstrate
the efficiency and robustness of our algorithm, in which we are able
to extract both complete and incomplete ellipses when the end points
of the major axes are available. In contrast, Y. Xie and Q. Ji are not
able to detect incomplete ellipses present in their real images.

2. INTRODUCTORY EXAMPLE

Consider the ellipse shown in Fig. 1a. Let point o be the center
position of the ellipse and (ox, oy) denotes the coordinates of point
o. Let α and β be defined as the half-lengths of the major and minor
axes respectively. We denote the angle the major axis made with
the x-axis as θ. For any arbitrary ellipse, if we know the values of
{ox, oy, α, β, θ}, we can completely define this ellipse.

Fig. 1. a) Arbitrary ellipse in which point o denotes the center posi-
tion of the ellipse, α and β denote the half-lengths of the major and
minor axes respectively and θ defines the angle the major axis made
with the x-axis. b) Another representation of the ellipse of Fig. 1a
in which lt,u and lr,s denote the major and minor axes respectively.

We next consider the same ellipse now presented in Fig. 1b. Let
lp,q denotes a line segment whose end points are point p and point
q. In this case, lr,s and lt,u denote the minor and major axes of the
ellipse respectively. Suppose the edge points t and u of this ellipse is
available from the image. Therefore by using (tx, ty) and (ux, uy),
we will be able to derive the values of {ox, oy, α, θ} (See Sect.
3). Following this, since only the half-length of the minor axis β is
unknown, we can use the remaining edge points of the image to vote
for β. Consequently, since we need to vote on only the half-length of
the minor axis, we will thus require a one dimensional accumulator.

3. DERIVATION OF ELLIPSE PARAMETERS

Consider an arbitrary ellipse shown in Fig. 2. We denote the foci of
the ellipse as points w and v and the center position of the ellipse as
point o. Given the values of (tx, ty) and (ux, uy), we can readily
derive {ox, oy, α, θ} as follows:

ox =
tx + ux

2
(1)

oy =
ty + uy

2
(2)

α =

√
(ux − tx)2 + (uy − ty)2

2
(3)

θ = tan−1

(
uy − ty

ux − tx

)
(4)

We proceed to derive the half-length of the minor axis β. Let
point k be an arbitrary point on the contour of the ellipse. Since

Fig. 2. a) Arbitrary ellipse in which points w and v denote the foci
of the ellipse and point o denotes the center position of the ellipse.

points w and v are the foci of the ellipse, therefore the sum of the
lengths of line segments lw,k and lk,v can be calculated by equ. (5)

√
(ky − wy)2 + (kx − wx)2 +√
(ky − vy)2 + (kx − vx)2 = 2α (5)

where

wx = ox − cos |θ|
√

α2 − β2 (6)

wy = oy − sin |θ|
√

α2 − β2 (7)

vx = ox + cos |θ|
√

α2 − β2 (8)

vy = oy + sin |θ|
√

α2 − β2 (9)

Therefore given an arbitrary point on the contour of the ellipse,
we can derive the value of β using eqns. (5)-(9) as follows:

β =

√
α2δ2 − α2γ2

α2 − γ2
(10)

where

δ =

√
(ky − oy)2 + (kx − ox)2 (11)

γ = sin |θ| (ky − oy) + cos |θ| (kx − ox) (12)

4. ALGORITHM DESCRIPTION

The above derivations provide the fundamental framework of our el-
lipse detection algorithm. We first consider every pair of edge pixels
as possible end points of the major axis of a hypothetical ellipse. Us-
ing eqns. (1)-(4), we can then calculate the values of {ox, oy, α, θ}
of the hypothetical ellipse. Following that, all other edge pixels will
be used to vote on the half-length of the minor axis β of this hypo-
thetical ellipse. Although we can use the local maxima of the accu-
mulator to determine the possible half-lengths of the minor axes, we
propose here a refinement that is able to better integrate the number
of edge pixels that vote for the hypothetical ellipse with the number
of edge pixels that is required to define a complete ellipse.

For each hypothetical ellipse, we use the calculated values of α
and β to compute the circumference of the ellipse [9]. An ellipse
is detected if the number of edge pixels that vote for this ellipse is
greater than RelativeV otemin× Circumference of Ellipse, where
0 < RelativeV otemin ≤ 1. In this aspect, setting RelativeV otemin
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= 1 will give detection of an ellipse only if all the contour points
of the ellipse can be found. In our experiments on synthetic and
real images, since we are dealing with incomplete ellipses, we set
RelativeV otemin to be between 0.2 and 0.45.

We point out here that our algorithm can be readily parallelized
to obtain good execution time. In our parallel implementation, each
slave processor investigates the feasibility of the parameters of a sub-
set of hypothetical ellipses. The complexity of our algorithm is dom-
inated by the voting phase and has a worst case runtime performance

of O(n3

p
) where n and p denote the number of edge points and the

number slave processors respectively. This complexity can be re-
duced in future by using feature points selected from a curve instead
of using all edge points as in our current implementation. Algorithm
1 and 2 detailed the pseudo codes for the master and slave processors
respectively.

Input : A two dimensional array, EdgePixels, holding the
coordinates of the edge pixels.

Output : A five dimensional array, EP, holding the values
{ox, oy, α, β, θ} of the detected ellipses.

αmin = Minimum half-length of the major axis;
RelativeVotemin = Relative minimum number of votes re-

quired for the assumed ellipse;

• Initialization(EdgePixels)

numEdgePixels = Number of edge pixels;
count = 0;
for k=0 to numProcessors-1 do

send(&k, &EdgePixels, Pk, datatag);
count++;

end
• Retrieve Ellipse Parameters(EdgePixels, EP)

while count>0 do
recv(&slave, &NewEP, Pany , resulttag);
EP = append(EP, NewEP);
count- -;
if k<numEdgePixels-1 then

send(&k, &EdgePixels, Pslave, datatag);
count++;
k++;

else
send(&k, &EdgePixels, Pslave, terminatortag);

end
end

Algorithm 1: Pseudo codes for the master processor.

5. EXPERIMENTAL RESULTS

In our first experiment, we test our ellipse detection algorithm on six
synthetic images. We extract the edge pixels with the Canny edge
operator. In the first test, we detect the ellipses in an image after
extraneous edge pixels have been introduced and correct edge pixels
removed from the image. As such, the results of this test provide a
good indication of the robustness of our ellipse detection algorithm.
These distorted images are shown in Fig. 3a, b and c. In Fig. 3a
and b, we manually remove some edge pixels from the complete
ellipses. In Fig. 3c, we add salt and pepper noise to the complete
ellipse. 5% of the pixels are affected after the adding of the salt and
pepper noise. In the second test, we include multiple overlapping

• Extract Ellipse Parameters()

recv(&startEdgeIdx, &EdgePixels, Pmaster , anytag);
while anytag == datatag do

t = EdgePixels [startEdgeIdx];
for i = startEdgeIdx+1 to numEdgePixels-1 do

u = EdgePixels [i];
Clear the one dimensional accumulator, A, and the
array circumference of assumed ellipse, CE;
Set points t and u as the end points of the major axis of
a hypothetical ellipse;
Calculate the values of {ox, oy, α, θ} from eqns.
(1)-(4);
if α ≤ αmin then

continue;
end
for every other edge pixels k do

Do,k =
√

(cx − kx)2 + (cy − ky)2;
if Do,k > α then

continue;
end
Calculate the value of β from eqn. (10);
Accumulator[β] += 1;
CE[β] = Circumference of ellipse with parameters
{ox, oy, α, β, θ};

end
Accumulator -= CE× RelativeVotemin;
{βi} = find(Accumulator>0);
NewEP = append(NewEP, {ox, oy, α, θ, {βi}});

end
send(&myid, &NewEP, Pmaster , resulttag);
recv(&startEdgeIdx, &EdgePixels, Pmaster , anytag);

end

Algorithm 2: Pseudo codes for the slave processors.

ellipses in the image (Fig. 3 d, e and f). This simulates to an extent
the effects of a cluttered environment.

Fig. 3. Synthetic images.

The results of our ellipse detection algorithm on the synthetic
images are summarized in Table 1. We evaluate the error ê of a
parameter by dividing the absolute difference between the true and
detected values of a parameter by the true value. As seen from Ta-
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ble 1, our algorithm is able to achieve good detection accuracy; the
maximum ê for the images which contain extraneous edge pixels is
1.15% while that for the images which contain multiple overlapping
ellipses is 1.07%.

Test Percentage error ê
ox oy α β θ

Test 1 0.27% 1.15% 0.34% 0.64% 0.00%

Test 2 0.47% 0.31% 0.78% 1.07% 0.50%

Table 1. Percentage error of our detected ellipse parameters as com-
pared to the true ellipse parameters of the synthetic ellipses.

In our second experiment, we perform ellipse detection on four
real images shown in Fig. 4a-d. The edge maps for these images
are extracted with the Canny edge operator and are shown in Fig.
4e-h. For the sake of the following discussions, we superimpose the
detected ellipses onto the edge maps and show them in Fig. 4i-l.

Fig. 4. a)-d) Real images. e)-h) Edges maps that act as input into our
ellipse detection algorithm. i)-l) The ellipses which are detected are
superimposed onto the edge maps.

Fig. 4a shows an image of a crescent and a star. As seen from
its edge map in Fig. 4e, the inner and outer arcs of the crescent can
be seen as belonging to the contours of two incomplete ellipses. The
result of our algorithm is shown in Fig. 4i. As observed, our al-
gorithm not only correctly detected these two ellipses but also fitted
them to the crescent with good accuracy. Fig. 4b shows the photo-
graph of Saturn [10]. The corresponding edge map is shown in Fig.
4f in which we observe that the contours of the ellipses present in
this image are not complete. For example, there are missing edge
pixels in the arcs of the ring. Despite this, we are still able to extract
four perceptually more significant ellipses in the image (Fig. 4j).
These detected ellipses correspond to the contour of the planet and
the inner and outer arcs of the ring.

Fig. 4c shows the image of a butterfly. Unlike the previous
two test images in which the location of the ellipses can be visually
detected, in this image the presence of the ellipses is not apparent
(Fig. 4g). Nevertheless, our ellipse detection algorithm is still able
to fit four ellipses to the four wings of the butterfly. Analysis of the
edge map shows that this is because the wing has a curve contour. As

such, our algorithm sees the wing as part of an incomplete ellipse.
Of particular interest is the result of our ellipse detection algo-

rithm on the image in Fig. 4d which shows three cups in an arbitrary
arrangement. We show the corresponding edge map in Fig. 4h in
which the outlines of two ellipses belonging to the mouth of cups 1
and 2 can be seen. As observed in Fig. 4l, our algorithm correctly
extracts these two ellipses. More importantly, in the original image
of Fig. 4d, we observe that the mouth of cup 3 is partially occluded
by the body of cup 1. Despite this, since the location of the major
axis of the ellipse can be detected by our algorithm, therefore we are
able to determine a perceptually agreeable position for the location
of the mouth of cup 3. The result in Fig. 4l also shows the limita-
tion of our algorithm in which the edge points of the major axis must
be present in order for our algorithm to detect the ellipse: Consider
the handle of cup 1 in which visual inspection shows that the handle
corresponds to the contour of an incomplete ellipse. However, since
the edge points defining the major axis for this ellipse cannot be lo-
cated, we are thus not able to fit an ellipse to the handle. However,
our algorithm fits an ellipse to the handle of cup 2. Analysis of the
edge map shows that although one end point of the major axis for
this ellipse is derived correctly from the handle of cup 2, the other
end point is derived wrongly from the mouth of cup 2. In this aspect,
this ellipse has been erroneously detected.

6. CONCLUSION AND FUTURE WORK

We present a novel ellipse detection algorithm based on HT which
uses an accumulator that is only one dimensional. We also show
how our algorithm can be easily parallelized to achieve good exe-
cution time. We are aware of only one other ellipse detection algo-
rithm that uses a one dimensional accumulator [8]. However, their
algorithm is not able to detect incomplete ellipses present in real im-
ages. In contrast, experimental results demonstrate the robustness
and effectiveness of our algorithm in which both complete and in-
complete ellipses are accurately detected in our synthetic and real
images when the end points of the major axes are available. In the
future, we plan to extend this work by locating the major axis of the
ellipse from a smaller set of feature points selected from a curve.
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