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ABSTRACT
The Bayesian filtering for recursive state estimation and the

shape-based matching methods are two of the most commonly

used approaches for target tracking. The Multiple Hypothesis

Shape-based Tracking (MHST) algorithm, proposed by the

authors in a previous work, combines these two techniques

using the Particle Filter algorithm. The state of the object is

represented by a vector of the target corners (i.e. points in the

image with high curvature) and the multiple state configura-

tions (particles) are propagated in time with a weight associ-

ated to their probability. In this paper we demonstrate that,

in the MHST, the likelihood probability used to update the

weights is equivalent to the voting mechanism for General-

ized Hough Transform (GHT)-based tracking. This statement

gives an evident explanation about the suitability of a MAP

(Maximum a Posteriori) estimate from the posterior proba-

bility obtained using MHST. The validity of the assertion is

verified on real sequences showing the differences between

the MAP and the MMSE estimate.

Index Terms— Particle Filter, Shape Tracking, MAP es-

timate

1. INTRODUCTION

Tracking objects is one of the most challenging and not yet

satisfactorily solved problem within the discipline of Com-

puter Vision. Major problems occur in presence of non-rigid,

fast moving objects and in complex and crowded scenes, where

frequent occlusions cause partial or total lack of target’s ob-

servations.

The representation of the shape of an object by means of

different types of features has been demonstrated to be a pow-

erful approach to accomplish this task. The basic idea is to

match a target model, if necessary continuously updated, with

the observations of the objects in the scene. Hariharakrish-

nan and Schonfeld [1] proposed a shape-based target tracking

technique that copes with frequent occlusions and non-rigid

objects by handling contour with a region-based approach.

Object boundary is predicted computing the block motion es-

timation and performing an occlusion/disocclusion detection

for the sub-parts of the target. This procedure renders more

reliable the tracker relying on regions association. Gabriel

et al. [2] make use of Interest Points (i.e. points in the image

where significant changes occur, as corners, junctions, etc.) to

characterize the shape of an object. To track a target, points

are extracted with Harris detector and, frame by frame, they

are matched by means of the Mahalanobis distance.

Tracking can be also considered as a state estimation given

the available observations. According to this consideration

the Bayesian filtering represents an efficient solution to ac-

complish tracking. Sequential Monte Carlo techniques (e.g.

Particle Filter) are widely employed methods to approximate

the Bayesian filtering in non-linear, non-Gaussian situations.

In [3, 4] tracking is accomplished by means of Particle Fil-

ter, describing the shape of the target with contours. More in

details, the CONDENSATION [3] algorithm, proposed by Is-

ard and Blake, tracks objects, modelling their shapes with B-

splines. Lanz, in [5], faces the problem of tracking defining

a Bayesian model of multiple parts of the body and a related

particle filtering based method to handle partial and complete

occlusions.

This paper aims at providing a motive for MAP (Max-

imum A Posteriori) state estimate for a particle filter based

tracking algorithm, the Multiple Hypothesis Shape-based Track-
ing (MHST) [6], by demonstrating that this choice corresponds

to a shape matching technique.

The remainder of the paper is organized as follows: in

Sect. 2 an overview of the Particle Filter is provided. In Sec-

tion 3 the Multiple Hypothesis Shape-based Tracking (MHST)

algorithm is described and the suitability of the Maximum a
Posteriori (MAP) estimate is stated. In Sect. 4 results on real-

world sequence demonstrate the advantages of MAP estimate

with respect to MMSE (Minimum Mean Square Error) and,

finally in Sect. 5 we conclude.

2. THE PARTICLE FILTER ALGORITHM

The recursive Bayesian state estimation (Bayesian filtering)

is one of the mathematical tools most commonly employed

in tracking to evaluate step-by-step the target state, usually

defined by its kinematics features. In Bayesian filtering two

steps can be identified: the prediction and the update. The
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system transition model

p(xk|xk−1) and the set of available observations z1:k−1 =
{z1, . . . ,zk−1} provides the posterior prediction as:

p(xk|z1:k−1) =
∫

p(xk|xk−1)p(xk−1|z1:k−1)dxk−1 (1)

New observations zk at time k and the observation model sup-

ply the likelihood probability p(zk|xk), that is used to correct

the prediction by means of the update process:

p(xk|z1:k) =
p(zk|xk)p(xk|z1:k−1)

p(zk|z1:k−1)
(2)

The Particle Filter [7] approximates Bayesian filtering when

a closed-form solution cannot be computed (i.e. when transi-

tion and observation models are non-linear and non-Gaussian)

by representing the posterior as a finite set of weighted sam-

ples χk = {x(m)
k , w

(m)
k }Ns

m=1. The set of Ns candidate sam-

ples (i.e. particles) {x̃(m)
k }Ns

m=1 representing the prediction

are drawn from the so called proposal distribution (or impor-

tance distribution) qk = (xk|x1:k−1,z1:k). In many applica-

tions the proposal distribution can be reasonably obtained by

the transition model so that particles are drawn from p(xk|x(m)
k−1).

Values of the associated weights are obtained by means of the

equation:

w
(m)
k =

p(zk|x(m)
k )p(x(m)

k |x(m)
k−1)

q(x(m)
k |x(m)

0:k−1,z0:k)
w

(m)
k−1 (3)

When the proposal distribution is given by the transition model,

the weight computation is simplified so that it can be derived

by w
(m)
k = p(zk|x(m)

k )w(m)
k−1. However, this choice, whereas

computationally efficient, provokes a degeneration of perfor-

mances, under the form of the propagation of several particles

with low weight, not representative of the state. To overcome

this issue the Sequential Importance Resampling (SIR) algo-

rithm procedure redistributes (resample) the particles to have

a more accurate approximation of the posterior.

From the approximated posterior probability two possible

state estimate can be easily obtained: the MMSE is deduced as

the mean of the weighted particles; instead, the MAP estimate

coincides with the sample associated to the highest weight.

3. MULTIPLE HYPOTHESIS SHAPE-BASED
TRACKING (MHST)

3.1. The MHST Algorithm

In [6], the authors describe a method, based on the Particle

Filter algorithm, that tracks objects basing conjunctively on

shape and position. To accomplish that, they proposed an up-

date procedure inspired by the Generalized Hough Transform

(GHT). According to the GHT the shape of an object can be

described with a list of corners (i.e. points in an image char-

acterized by high curvature) positions.

The state of the object is represented by a vector, x =
[(x(1), y(1)), (x(2), y(2)), . . . , (x(N), y(N))]T , constituted by

the image plane position of N corners. Then for each ob-

ject a 2×N vector is initialized with a set of corners equally

distributed in the bounding box. This procedure is necessary

to increase the quantity of information carried by each of the

two dimensional subspaces of the state vector (i.e. the corners

position). Prediction step is fulfilled using a second-order au-

toregressive model:

xk = Axk−1 + Buk−1 + νk−1 (4)

where A and B are identity matrices of dimension 2N × 2N ,

ν is a Gaussian noise N(0, σ2), and uk−1 is the input vector

defined as uk−1 = x̂k−1 − x̂k−2, with x̂ indicating the es-

timate. The prediction process provides multiple hypothesis

regarding the position and the shape of the object in the fol-

lowing instant according to the transition model specified in

Eq. 4. In fact the motion model describes the movement of

each corner defined in the state vector.

In the update step, particle weights are recomputed according

to the likelihood probability. To accomplish that the observed

corners are compared to the predicted state by matching be-

tween the hypothesized configurations of the state vector and

the detected corners. A function s(x(m)
k(i)) can be defined to

determine if a corner of the model is close to an observed

corner zk(j), that is:

s(x(m)
k(i)) =

M∑
j=1

exp
(
−

(
d
(m)
k(i,j)

)2
)

(5)

where M is the total number of extracted corners and(
d
(m)
k(i,j)

)2

=
∥∥∥zk(j) − x

(m)
k(i)

∥∥∥2

is the Euclidean distance be-

tween the i-th predicted corner of the m-th particle x
(m)
k(i) =

(xi, yi) and the j-th extracted corner.

Then, in order to provide a one-by-one association between

predicted and observed corners, s(x(m)
k(i)) is compared to a uni-

tary distribution, i.e.

Vk =
N∑

i=1

(
s(x(m)

k(i))− 1
)2

(6)

The likelihood probability between the detected corners and

the m-th particle representing a possible position and config-

uration of the object is:

p(zk|x(m)
k ) ∝ exp(−Vk) (7)

The set of weighted samples χk = {x(m)
k , w

(m)
k }Ns

m=1 with

w
(m)
k = w

(m)
k−1p(zk|x(m)

k ) then gives an approximation of the

posterior distribution. A resampling step follows to remove

the not probable particles.
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3.2. Analogies between GHT-Based Tracking and MHST

Oberti et al. in [8] use a variation of the GHT to track objects

by comparing the observed corners with the model of the ob-

ject (i.e. the GHT). The GHT is composed by a list of corners

characterized by the their relative position (δx, δy) with re-

spect to a reference point xREF (e.g. the centroid, the upper

left corner of a bounding box, etc.) by its gradient and by the

persistence of the corner over successive frames. When a cor-

ner belonging to the model matches (with respect to gradient

and relative position) a detected one, a vote is given to the

reference point. The reference point that obtains the highest

number of votes identifies the displacement of the object.

The approach described in Sect. 3 is also based on a shape

matching between a model (a particle) and the observed cor-

ners by means of Eq. 6. In this case corners are localized

and compared in the image plane coordinates without taking

into account a reference point, as it was in [8]. However, if

we consider the model corner position for the particle m as

x
(m)
k(i) = δx

(m)
k(i) +x

(m)
REFk

it is possible to demonstrate that Eq.

6 corresponds to a voting mechanism on the reference point

(e.g. the centroid with respect to the corners of xk).
The prediction step applied to a particle, which represents a

target position and configuration, establishes a shift of corners

based on the transition model. Coherently the reference point

is subjected to a shift which, on the average, corresponds to

the corners displacements. Then, the relative position of the

corner δx
(m)
k(i) with respect to x

(m)
REFk

is also predicted.

In the update step the function s(x(m)
k(i)) (see Eq. 5) is com-

puted. When this function is close to the unity it means that

the predicted corner match an observed one. If we write the j-

th extracted corner and the i-th corner of the model positions

with respect to the reference point we have:

s̃(x(m)
k(i)) =

M∑
j=1

exp
(
−

(
d̃
(m)
k(i,j)

)2
)

(8)

where
(
d̃
(m)
k(i,j)

)2

=
∥∥∥(zk(j) − x

(m)
REFk

)− δx
(m)
k(i)

∥∥∥2

. Then, as

this distance is close to one for a corner i that matches an

observation zk(j), the value of Vk(i) is near zero entailing

an high likelihood for corner i. According to this procedure a

predicted reference point x
(m)
REFk

is supported by observations

when for the majority of the the i-th corners of the model there

is one (or more) j detected corner such that
(
d̃
(m)
k(i,j)

)2

∼ 0.

Then, as in [8] the quantity
(
d̃
(m)
k(i,j)

)2

is used to find the

x
(m)
REFk

displacement, in this case it is employed to confirm

the predicted shift.

3.3. Estimate Selection

Given the particles approximating the posterior distribution,

an estimate of the state has to be defined at each step. As pre-

viously stated (see Sect. 2) MMSE and MAP estimates can be

derived from χk = {x(m)
k , w

(m)
k }Ns

m=1. The most appropriate

estimate for the MHST is the MAP, that is the particle with

the highest weight. This statement comes from the fact that,

as we have just demonstrated, (see Sect. 3.2) the likelihood

of the (m)-th particle is equivalent to the votes received by

the related reference point. Then choosing the particle with

the highest weight coincides to select the x
(m)
REFk

receiving

the highest number of votes from the observations and then

the most probable displacement of the object. The MMSE

estimate, on the contrary, is not suitable since it would pro-

vide a weighted mean of the predicted shift which, therefore,

is not representative of the object motion given by the model-

observation matching.

4. EXPERIMENTAL RESULTS

We demonstrate the suitability of the choice of the MAP es-

timate for the MHST algorithm in real-world test sequences

of rigid and non-rigid object. As outlined in [6] this tracking

method can work for static cameras without the necessity of

a change detection algorithm to localize moving targets. To

verify this fact, observed corners are extracted using a SU-

SAN corner detector [9] in a searching area surrounding the

target.

Targets are manually selected at the first frame and the

prior distribution is initialized with a Gaussian having a mean

equivalent to the corners position. To choose the N corners

constituting the mean an automatic method aiming at having

them equally distributed on the object is employed. In our

experiments the state vector is 16 dimension, i.e. 8 corners

are used to represent the target. This choice is a trade-off

between the necessity of an accurate model and the computa-

tional complexity. Moreover the increase of the state dimen-

sion leads to sample degeneracy and impoverishment. Since

no change detection module has been employed the observed

corners zk used to compute the likelihood are extracted from

a searching area of variable dimension according to the kine-

matics characteristic of the target.

Two situations that can be commonly encountered in the

tracking domain of application were chosen to show the bet-

ter results of the MAP estimate with respect to MMSE: 1)

occlusion of two non rigid targets (humans); 2) a rigid object

modifying its shape due to the motion, in this case, a curving

car. The posterior is approximated with 200 particles and the

transition model variance, that takes into account the accel-

erations and deformations of the corners, is σ2 = 0.5 for 1)

and is σ2 = 1 in 2), the curving vehicle test sequence. In

these conditions, with a non optimized code, on a Pentium 4

3.0 GHz machine with 1 GB RAM, the tracker works at 9.1

frames/sec with one target and 4.6 in the test 1), where two

targets are present. In Figures 1(a)-1(c) it is shown that, in the

case of two persons walking and coming to an occlusion, the

MHST is able to maintain the track of the two targets after
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the overlap when the MAP estimate is used. When MMSE

estimate is employed (see Figures 1(d)-1(f)), on the contrary,

the tracking procedure fails. In this case, in fact, when the

(a) (b) (c)

(d) (e) (f)

Fig. 1. a), b), and c) MHST results with MAP estimate; d),

e), and f) MHST results with MMSE estimate

occlusion occurs the MMSE is not capable to cope with the

non-linearity of the situation and this leads the Particle Filter

to propagate wrong states hypothesis. Using the MAP esti-

mate, on the other hand, only the particle, which best matches

the observations, is preserved allowing to recover the object

after the occlusion. The second test (see Fig. 2), where a curv-

ing car is tracked, shows again the failures of the MHST with

MMSE estimates for non-linear shifts. In particular, worth of

(a) (b)

Fig. 2. MHST results for a curving car: a) the real and esti-

mated trajectories in the image plane; b1) MAP estimate; b2)

MMSE estimate

noticing is that the MMSE is not able to handle the changes

in car dimension and pose and the track tends to propagate,

as expected, a linear behaviour. Table 1 shows the Root Mean

Square Error (RMSE) of the MHST with the two estimate

computed with respect to the Ground Truth showing the sig-

nificant better results if MAP estimate is used.

Table 1. RMSE of the MHST using MAP and MMSE esti-

mates
Sequence 1 (occlusion) 60 frames Sequence 2 (car)

Target 1 Target 2 30 frames

MAP 6.1 9.1 13.1

MMSE 9.1 20 27.2

5. CONCLUSIONS AND FUTURE WORKS

In this paper we presented a demonstration of the equiva-

lence between the likelihood probability used to update the

weights in a Particle Filter based tracking algorithm, the Mul-

tiple Hypothesis Shape-Based Tracking (MHST) algorithm,

and the voting mechanism for Generalized Hough Transform

(GHT)- based tracking. This consideration provides a motive

regarding the suitability of a MAP state estimate instead of

the MMSE estimate and the significant benefits of this choice

have been shown over two real-world sequences.

Ongoing researches are focused on selecting the most ap-

propriate corners of the object to initialize the state vector and

to define a transition model more robust to sudden direction

and speed changes of the target.
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