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Abstract—This paper proposes an image registration method.
Edges are detected from images and partitioned into segments
as matching primitives. Then, corners on the edges are detected
to guide registration. A similarity metric is proposed based on
the number of pairs of matching segments. Corner mappings are
sequentially tried along a segment, from which a transformation
is obtained. The corner mappings are evaluated by the similarity
metric under their resulting transformation. By this means,
corner mappings are established by utilizing whole images. Since
the sensitivity of transformation parameters to the accuracy of
corner mappings, as many corner mappings as possible are used.
Experimental results show that the proposed method is robust,
especially when there is no integral corresponding edges between
two images.
Index Terms: Image Registration, Corner-Guided, Edges

I. INTRODUCTION

Image registration is an important task in computer vision.

It comprises of four elements [1]: (1) a feature space, (2)

a search space, (3) a search strategy, and (4) a similarity

metric. In the past, a number of registration algorithms have

been presented. Those algorithms can be classified into two

categories, intensity-based and feature-based. Viola et al. [2]
and Collignon et al. [3] proposed mutual information as a
similarity metric to align two images. Mutual information

is calculated based on only intensity, and it is an effective

similarity metric especially for multimodal images. However,

information-theoretic methods do not incorporate spatial or

higher-level-feature information, which are also useful.

The commonly used features include edges, contours, tex-

tures, etc. Bay et al. [4] extracted edges and matched straight
line segments between two wide-baseline images. Xia et al. [5]
proposed matching curves (edges) by “super-curves”. Bartoli

et al. [6] introduced curves into registration and obtained a
global solution by minimizing the registration error over all

points and curves.

This paper proposes an image registration method based

on edges and corners. The goal is to register images based

on non-ideal edges, as edge detection is influenced by noise

and other factors. Edges are detected and one-pixel-wide

curves are extracted from edge images. Then corners along

the curves are detected, with which edges are partitioned into

segments as matching primitives. At this point, there are two

ways to register images using edges and corners. One is to

optimize a registration function of a transformation, which is

defined to be the similarity metric under the transformation.

But unfortunately, a registration function is usually neither

a smooth function [7] nor a linear function and hence any

optimization algorithm may fail to converge.

The other way is to look for correspondences of salient

feature points. Assume the misalignment can be accounted for

by an affine transformation. Since three pairs of non-collinear

points completely determine an affine matrix, it suffices to

establish three pairs of correspondences. However, in general

there is no way to fulfill this task unless two images are

already correctly registered. This paper proposes establishing

corner correspondences by utilizing the information of whole

images. For a set of point correspondences, an affine matrix

is determined. The set of correspondences are preserved if

the affine matrix results in a high similarity metric. Thus, the

information about registration quality is implicitly introduced

into the step of building corner correspondences.

The paper is organized as follows. Section II describes the

similarity metric. Section III discusses how to determine the

transformation parameters. Section IV shows the experimental

results and conclusion is presented in Section V.

II. SIMILARITY METRIC BETWEEN EDGE IMAGES
This section discusses the proposed similarity metric. Let

Ir(x, y) represent a reference image, If (x, y) a float image,
T a transformation, and S(Ir, If ) a similarity metric between
the two images. Registration is to search the maximizer T̂ of
a registration function. Formally,

T̂ = arg max
T

S(Ir(x, y), If (T (x, y))). (1)

To measure the similarity metric between Ir(x, y) and
If (x, y), three steps are taken. (1) Detect edges and junc-
tions. (2) Partition the edges into segments with the detected

junctions. (3) Compute the distances between segments.

A. Detect Edges and Junctions

A Canny operator [8] is used to detect edges from images. It

is applied because of its ability of providing “continuous” edge

segments. For each edge, one-pixel-wide curves are extracted.

‘Curve’ here is refered to a sequence of edge points. Then,

junctions are detected on those curves with methods such as

the one in [9]. ‘Junction’ is defined to be the points of maximal

curvature along a curve, and used as ‘corner’. Nevertheless,

edge detection is not essential to registration and the proposed

method aims to align images based on non-ideal edges. And,

no constraint is placed on corner detection techniques except

that junctions are limited to lie on the curves.
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B. Partition edges into segments

With those detected corners, each curve is partitioned into

segments. This step is essential, because for the reasons

such as noise, not all edges/curves of the reference image

would have their correspondences in the float image. As a

compromise, it is expected that parts of some edges in one

image can be matched to parts of edges in the other.

Since a curve is a sequence of points, the task of partitioning

can be sequentially tackled by dividing the curve with corners.

Two factors considered are: (1) the lengths of segments Ls,

and (2) the number of corners lying on a segment. Longer

segments are more likely caused by physical objects than

by noise, so only those segments of lengths greater than a

threshold are used. Affine transformations preserve straight

lines and any two lines can be aligned up by an affine

transformation. A corner is where the direction of a curve

changes fastest, and hence the two segments connected with

the same corner usually (but not necessarily) have different

directions. So segments are required to contain at least Njct

corners, in order to avoid too many mappings between straight

lines. In this paper Njct = 1.
Fig. 1 shows an original image and its segments. 7 longest

edges are retained from the edge detection result, where Ls =
40 and Njct = 1. Segments are portrayed in different widths
on each curve, and they are used as matching primitives in

Section II-C.

(a) Original image (b) Segments

Fig. 1. An image and its segments.

C. Assessing Segment Similarity

Let SEr, r = 1, 2, · · · , m, denote a segment in the reference
image and SEf , f = 1, 2, · · · , n, in the float. A natural
similarity metric is to compute the distance between the two

segments as closed sets (also refer to [6]). However, this

similarity metric admits only the geometric distance of SEr

to SEf , but no information about the shapes. Another way

is to use the average of the distances of points p on SEr to

SEf . Formally,

d(r, f) = d(SEr , SEf ) =
1

Lr

∑
p∈SEr

d(p, SEf ). (2)

Wherein, Lr is length of SEr, and d(p, SEf ) is the distance
of p to SEf .

When d(r, f) is less than a threshold Td, SEr and SEf are

called a pair of matched segments. Td is typically chosen as

1 ∼ 2. For a particular T , three similarity metrics are defined
as follows.

S1(Ir(x, y), If (T (x, y))) = |{(r, f) : d(r, f) ≤ Td}|. (3)

S2(Ir(x, y), If (T (x, y))) = |{f : ∃r, d(r, f) ≤ Td}|. (4)

S3(Ir(x, y), If (T (x, y))) = |{r : ∃f, d(r, f) ≤ Td}|. (5)

S1 is the number of pairs of matched segments, while S2 (S3)

is the number of segments in If (T (x, y)) (Ir(x, y)) that can
be matched to reference (float) segments.

III. DETERMINE TRANSFORMATION
This section deals with how to determine the transformation

matrix. As discussed above, a registration function is usually

neither a smooth function nor a linear function, and any

algorithm may fail in optimizing the registration function. So

we wish to make the proposed algorithm not rely much on

optimization techniques. The idea is to establish corner cor-

respondences and then determine the affine matrix T without
involving optimization.

In order to correspond corners robustly, global information

is incorporated. Specifically, for any set of corner correspon-

dences, an affine matrix T is obtained. Then the similarity
metrics S1, S2 and S3 in (3), (4) and (5) are employed in

determining if T is close to the true matrix or not. Assume
there existM corners in Ir(x, y), and N in If (x, y). Then the
total number of sets of 3 pairs of correspondences is

(
N
3

) ·M3

(match float corners to reference ones). For the reason of

computational cost, it is necessary to reduce the large number

of corner correspondences. The rest of this section presents

how to kick out corner correspondences step by step.

A. Constrain Transformations

An affine matrix T is represented as T = (A, t), where

A =
( a11 a12

a21 a22

)
, t =

( a13

a23

)
.

A can be decomposed as the product of rotation, scaling, and
shearing [1] [5]. Under T a point p is transformed to p′ via

p′ =
( a11 a12

a21 a22

)
· p +

( a13

a23

)
=

(
cos θ sin θ
− sin θ cos θ

)(
sx 0
0 sy

)(
1 k
0 1

)
· p + t (6)

For the purpose of reducing the corresponding candidates for

p, let us analyze the range of the distance from p to p′.

‖p′ − p‖2=‖(A − I) · p + t‖2

≤‖(A − I) · p‖2 + ‖t‖2

≤‖(A − I)‖2 · ‖p‖2 + ‖t‖2 (7)

Simple calculation gives

A =

(
cos θ · sx k cos θ · sx + sin θ · sy

− sin θ · sx −k sin θ · sx + cos θ · sy

)
.
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‖A−I‖2 = σ1(A−I), where σ1(A−I) is the largest singular
value of A − I , i.e. the square root of the largest eigenvalue
of (A − I)T (A − I) [10] (pp. 375-383).

It is assumed that we are able to obtain a rough estimation of

the correct affine matrix (also refer to [3]), which means ‖(A−
I)‖2 and ‖t‖2 are small enough. In particular, it is assumed

that |θ|, |Δx| = |sx−1|, |Δy| = |sy−1| and |k| are sufficiently
small and accordingly first-order approximation gives

A − I =

(
Δx k + θ
−θ Δy

)
. (8)

However, it is still not easy to get an analytic form for singular

values of A−I shown in (8). An estimation [10] (pp. 202-208)
is

‖A − I‖2 ≤
√

2‖A − I‖∞,

‖A − I‖∞ ≤ max{|Δx| + |k + θ|, | − θ| + |Δy|} (9)

When |θ| = 0.1, |Δx| = |Δy| = |k| = 0.05, ‖A − I‖2 ≤
0.2

√
2.

B. Sequentially Choose Corners

As discussed in Section II-A, extracted curves are sequences

of edge points, which hence implies that the corners on each

curve are also ordered. Let Jf
k,i denote the ith corner on the

kth curve of the float image. Three corners are to be chosen

on the kth curve with Jf
k,i being the first one Jf

1 . The second

corner Jf
2 is chosen as J

f
k,j such that i < j ≤ i+Nrun, and the

third Jf
3 = Jf

k,l such that j < l ≤ i + Nrun. Nrun controls

the number of combinations (Jf
1 , Jf

2 , Jf
3 ) with Jf

1 = Jf
k,i.

For example, Nrun = 2 admits only one combination, i.e.
(Jf

k,i, J
f
k,i+1

, Jf
k,i+2

). In this paper, Nrun = 4.

The above process is performed from the first corner (i = 1)
on each curve. Set Jf

1 = Jf
k,i+1

when all cases of (Jf
1 , Jf

2 , Jf
3 )

are exhausted with Jf
1 = Jf

k,i. This step in conjunction with

the above forms a sequential process of choosing corners.

Once Jf
1 , Jf

2 , Jf
3 are chosen, the corresponding corner

candidates Jr
1 , Jr

2 , Jr
3 in Ir(x, y) are picked up by the

technique in Section III-A. Jr
1 , Jr

2 , Jr
3 are required to be

different corners. A further constraint can be placed on the

candidates that they lie on the same curve. But it turned out

to be not necessary, since in practice, there are not a lot of

corresponding candidates for a corner. In fact, the cases can

be easily eliminated (see Section III-C) in which J r
1 , J

r
2 , J

r
3

do not lie on the same curve.

C. Decide on Corner Correspondences

Given Jf
1 , J

f
2 , J

f
3 corresponding to Jr

1 , J
r
2 , J

r
3 respectively,

an affine matrix T is obtained by solving the following

equation: (x1 y1 1
x2 y2 1
x3 y3 1

)
︸ ︷︷ ︸

X

·
( a11 a21

a12 a22

a13 a23

)
︸ ︷︷ ︸

T′

=

(u1 v1

u2 v2

u3 v3

)
︸ ︷︷ ︸

U

, (10)

where (xi, yi), i = 1, 2, 3, are the coordinates of Jf
i , (ui, vi)

are of Jr
i . If X tends to be singular, which means Jf

1 , J
f
2 , J

f
3

are collinear, then this set of correspondences are discarded.

By assumption that ‖(A−I)‖2 and ‖t‖2 are small, the set of

correspondences from Jf
1
, Jf

2
, Jf

3
to Jr

1 , J
r
2 , J

r
3 can be roughly

evaluated by the elments of T . If T does not satisfies the
assumption, then discard this set of correspondences. Else, the

similarity metrics S1, S2, and S3 in Section II-C are computed

under T . This step is important, as the global information
are incorporated by this means. S1, S2, and S3 measures the

similarity between the entire edge images rather than local

regions.

For each Jf
k,i, let Jr,1 and Jr,2 be two correspondence

candidates, which result in two affine matrixes T1 and T2. T2

is said to be better than T1 if the following conditions hold.

1) S1(T2) > max(S1(T1)/2, N1),
2) S2(T2) > max(S2(T1)/2, N2),
3) S3(T2) > max(S3(T1)/2, N3), and
4) S1(T2)+S2(T2)+S3(T2) > S1(T1)+S2(T1)+S3(T1).

N1, N2, N3 are used to further narrow down acceptable affine

transformations. In general, T2 is better, if the average of

the three similarity metrics increase (condition 4), while the

individuals do not decrease too much (condition 1-3).

The above process concludes with the best correspondence

corner for each Jf
k,i. Nevertheless, the best may not imply

the right for Jf
k,i because of the deficiency of all steps

involved in computing similarity metrics. Nc best pairs of

correspondences are picked up based on the average metric
1

3
(S1(T )+ S2(T )+ S3(T )). Since there is sensitivity of T to
the accuracy of corner mappings, Nc ought to be at least a

litter greater than 3. Then (10) becomes an over-constrained

equation of more equations than unknowns, and is solved by

a minimum-least-square technique. Nc = 10 in this paper.

IV. EXPERIMENTAL RESULT

This section shows experimental results. If (x, y) is gener-
ated by rotating Ir(x, y) by 10◦. Note that the rotation center
is the upper-left corner and downwards is the positive direction

of vertical coordinate. The true transformation from If (x, y)
to Ir(x, y) is

T =
(

0.9848 0.1736 0
−0.1736 0.9848 0

)
.

Fig. 2 shows an example of wrong correspondences. It is

difficult to reject such correspondences if local information

is utilized only. The correspondences result in S1 = S2 =
S3 = 1, and hence are not considered to be correct. Fig. 3
shows an example of correct correspondences, with Ir(x, y)
and If (x, y) same as above, resulting in S1 = 7, S2 = 7,
S3 = 4, and

T =
(

0.9652 0.1620 1.8532
−0.1786 0.9846 −0.6798

)
.

Fig. 4 illustrates the sensitivity of the transformation matrix

to the accuracy of corner correspondences. Although those
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corners are pretty well mapped in human vision, they end up

with S1 = 2, S2 = 2, S3 = 1, and

T =
(

0.7821 0.1996 29.1062
−0.1795 0.9963 −0.9377

)
.

This motivates using over 3 pairs of corner correspondences.

And Fig. 5 shows 10 pairs of corresponding corners, where the

numbers next to corners indicate the mappings. A minimum-

least-square solution is obtained for T :

T =
(

0.9875 0.1675 1.0488
−0.1670 0.9920 −1.9775

)
,

which is more close to the true matrix than others above.

Fig. 6 shows two edge images in which some edges do not

have their integral correspondences, but segments do. The float

image is generated by translating the reference by (15, 15).

The experiment shows that the proposed method can robustly

map corners and determine the transformation matrix T:

T =
(

0.9987 0.0009 −15.0321
0.0002 0.9995 −14.9563

)
.

(a) Float corners (b) Reference corners

Fig. 2. Wrongly mapped corners

(a) Float corners (b) Reference corners

Fig. 3. Corretly mapped corners

(a) Float corners (b) Reference corners

Fig. 4. Sensitivity of T to the accuracy of correspondences

(a) Float corners (b) Reference corners

Fig. 5. Over 3 corner correspondences are used

(a) Float corners (b) Reference corners

Fig. 6. Not all edges have correspondences in the other image

V. CONCLUSION
This paper proposes a corner-guided image registration

method using edges. Edges are detected and partitioned

into segments as matching segments. Corner correspondences

are established utilizing global information to determine the

transformation parameters. Experimental results show that the

proposed method can work robustly on non-ideal edges, and

hence will be useful to multimodal image registration.
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