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ABSTRACT

Geometric analysis of postmortem normal and autistic human
subjects reveal distinctions in deformations in the corpus cal-
losum (CC) that may be used for image analysis-based studies
of autism. Preliminary studies showed that the CC of autis-
tic patients is quite distinct from normal controls. We use an
implicit vector representation of CC to carry out the registra-
tion process which measures the differences between differ-
ent CC’s. This paper introduces a new method for the ��
shape registration problem by matching vector distance func-
tions. A variational frame work is proposed for the global
and local registration of CC’s. A gradient descent optimiza-
tion is used which can efficiently handle both the rigid and the
non-rigid operations together. The registration of real CC ex-
tracted from postmortem data sets demonstrates the potential
of the proposed approach.

Index Terms— Shape Representation, Shape Registra-
tion, Level Sets, Energy Minimization.

1. INTRODUCTION

Autism is a complex developmental disability that typically
appears during the first three years of life and is the result of
a neurological disorder that affects the normal functioning of
the brain, impacting development in the areas of social inter-
action and communication skills.
During the past two decades, studies of autism’s neuropathol-

ogy have increased dramatically. Most of these studies have
reported alterations in some regions of the brain in autistic
individuals compared to typically developing ones. Gurin
et al. [1] have reported a thin corpus callosum (CC) in his
autism study. It was also reported in many MRI based stud-
ies that the corpus callosum, which is the largest commisure
in the brain that allows neural communications between the
two hemispheres, has reduced size in autistic subjects. How-
ever, findings are inconsistent as to which segment of the CC
is abnormal. Most studies have reported a reduced posterior
CC, whereas other studies have found that the reduction was
limited to the anterior segment. A more recently conducted
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MRI study [2], has shown aberrant connections between cor-
tical regions. This study has also revealed reductions in the
total colossal area as well as in the anterior third of the CC in
autistic sufferers.
So, our target is to measure the differences between nor-

mal and autistic CC’s by means of registration. The process
includes both global and elastic deformation to measure and
quantify the deformation at each point of the CC contour;
That will require a reasonable shape representation to handle
the operation.
Shapes registration is an important complex problem in

computer vision, computer graphics and medical imaging. It
has been handled in different manners in many applications
such as shape-based segmentation, shape recognition, and track-
ing.
The shapes registration problem is formulated such that

a transformation that moves a point from a given shape to a
target one according to some dissimilarity measure [3], needs
to be estimated. The dissimilarity measure can be defined
according to either the curve or by the entire region enclosed
by the curve.
Different shapes registration approaches were proposed in

numerous literature for example [4, 5, 6]. These approaches
suffer from various problems. Scale variations and local de-
formations can not be covered in many cases. Also their de-
pendency on the initialization represents one of the hardships.
Vector distance functions (� �� �

�) are used in [7] to evolve
smooth manifolds. This representation defines a vector that
connects any point in space to the nearest point on the curve
or surface. This representation can deal with shapes of differ-
ent dimensions. We proposed shape representation by vector
components in a different manner in our shape-based segmen-
tation framework [8]. This representation serves the segmen-
tation and shape registration processes.
In this paper, we focus only on the registration problem by

proposing a novel and robust �� shape registration approach.
We use � �� representation to handle the �� shape registra-
tion process. The use of the � �� results in adequate energy
functionwhich is optimized to get the transformation parame-
ters both in the global and local registration schemes. Match-
ing these vector functions formulates a variational framework
for the registration process of �� shapes. The optimization
criterion employed can handle the global and local pixel-wise
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deformations like in [3]. Promising results for real shapes in
�� will be discussed.
This paper is organized as follows; Data collection and

protocol are demonstrated in Sec. 2, Section 3 presents the
shape representation formalism using � �� , Global registra-
tion and alignment technique will be presented in Sec. 4, Sec-
tion 5 is dedicated for the local registration while results will
be shown in Sec. 6. The paper ends with a discussion and
future research aspects in Sec. 7.

2. DATA COLLECTION

The postmortem MRI data used in this study is described in
detail in [9]. In order to optimize white-gray matter substance
contrast in formalin-fixed brains, a proton density weighted
imaging sequence was used. The method employed a 1.5
Tesla GE MRI system to scan brains that have been placed
within a special device that avoids dehydration during the
scanning procedure. The images were collected in a 192x256
acquisition matrix and were 0-filled in k space to yield an im-
age of 256x256 pixels, resulting in an effective voxel resolu-
tion of approximately 1.0 x 1.0 x 1.5 mm. Eight whole brains
and six hemisphere coronal volumes of size 512x512x114.
Each slice is 1.6mm thick with an in-plane resolution of
0.625x0.3125mm, on which the WM appears dark, the GM
appears light, and the fluid appears brighter. Due to different
factors including the removal of the brain from the skull and
fixation problems, distortions such as large deep cuts, com-
monly occur and are revealed in the MRI scans.

3. SHAPE REPRESENTATION AND THE VECTOR
DISTANCE FUNCTION

An emerging way to represent shapes boundaries can be de-
rived using level sets. These functions are invariant to ro-
tation and translation and also can handle complex topolo-
gies. Using the conventional signed distance function (level
set function) will result in handling only homogenous scales.
Hence the registration process fails when the scales are dif-
ferent. That is why, we are going to use the � �� to handle
this problem as follows [10];
The function� � �� � �� is defined for a given smooth

curve � that represents boundaries of a certain shape:

���� � �� ����� � �� (1)

and�� is the point on � that has the minimum Euclidean
distance to �. We have now � set in a vector form:���� �
������� ������� where �� ��	 �� are the components of
the vector function in the coordinates directions.
Applying a global transformation with different scales in

different directions to a given shape represented by the de-
signed vectormap, one can predict the map of the transformed

shape. The following relation can be established between two
shapes’ boundaries (
 ��	 �) representation:

����� � ������� (2)

The second contour results from scaling, rotating, and trans-
lating the first shape by the parameters ���� ��	 � respec-
tively where� is defined as the transformation function.

4. GLOBAL REGISTRATION OF SHAPES

The � �� shape representation changes the problem from
the 	� shape to the higher dimensional vector representation.
Looking for a transformation� that gives a pixel-wise vector
correspondence between the two shapes representations ��

and �� , is our target. The problem now is considered as a
global optimization that includes all points in the image do-
main. Sum of squared differences will be used to show the
performance of the proposed approach.

4.1. Energy Formulation

The vector shape representation is invariant to translation only,
so the following vector dissimilarity measure is used to mea-
sure the difference between the current vector (rotated and
then scaled) and the target one (note that the magnitude of the
vector representation is invariant to rotation and translation):

� � �������� ����� (3)

and the optimization objective function is given by sum-
ming up the vectors differences over the domain:

�������� �

�
�

�
�
�	� (4)

The complexity of the problem is reduced by taking only
points around the zero level of the vector function since far
away points mapping can be neglected. The matching space is
limited to a small band around the surface that can be selected
by introducing the following energy function:

�������� �

�
�

Æ���������
�
�	� (5)

where Æ� is an indicator function [10]. The transformation
parameters are estimated using the gradient descent optimiza-
tion.

5. LOCAL REGISTRATION OF SHAPES

The above registration method can not handle local deforma-
tions. It maximizes the overlapping between the given two
shapes. The global transformation� is combined with a lo-
cal deformation vector� � �
� 
� 
��

� using the following
dissimilarity measure:

�� � �������� ����
�� (6)
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Fig. 1. Two different slices in the sagittal section of a post-
mortem data set. The CC is segmented using and marked in
red.
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Fig. 2. Corpus callosum registration demonstrates the random
selection of transformation parameters for the initial positions
of shapes. Initial position is given in the left column and final
registration is illustrated in the middle. Registration energy is
plotted versus iteration number in the last column.

and hence the following objective function is used:

���������� � ��

�
�

Æ��
�
��� � ��

�
�

Æ��
�
� ���� (7)

The energy contains a term for the global registration and
another part for covering the local deformations. Each part is
weighted by the corresponding coefficient �. The deforma-
tion field is smoothed by adding another term that includes
their derivatives as follows:

���������� � ��

�
�
Æ��

�
��� � ��

�
�
Æ��

�
�����

� ��

�
�
����� ��

��� ��
������

(8)
These local deformations are handled by the incremental

free form deformations as in [11].

6. EXPERIMENTAL RESULTS

We carry out shape registration on different CC’s coming from
postmortem data sets. The structure is segmented using the
shape-based segmentation technique we proposed in [8] (see
Fig. 1). Implicit vector representation is calculated for each
structure. A global registration is performed first to estimate
the scales, rotation, and translations parameters. A demon-
stration for some registration cases is found in Fig. 2. The en-
ergy decreases smoothly to make sure that the parameters are
going to the steady state to get the boundaries of the source
and target near to each other. The results go with local de-
formations covering by minimizing sum of differences of the
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Fig. 4. Validation example of a local registration case with
displacement field measurements: (Top) Displacement field
magnitude plot over the shape contour, (Bottom Left) x-
Component of the displacement field error, and (Bottom
Right) y-Component of the displacement field error.

vector representations as well. Two different cases are demon-
strated in Fig. 3. The approach is able to cover local defor-
mations as shown in each case and also keep the topology of
the shapes (see the grid deformation at the last column). The
algorithm is successful because it can give exact meaningful
anatomical correspondences (it is clear from the ends of the
corpus callosum which correspond to the ends of its target).
To quantify the algorithm, ��� registration cases are carried
out. In each case, the similarity between the source and target
shapes is calculated by measuring the correlation coefficient
(between the magnitudes of the vector representations) be-
fore and after registration. The results are impressive. The
improvement is very big and the coefficient is very close to �.

Figure 4 shows a validation experiment for the proposed
approach. Two boundaries are used with known point corre-
spondences. The approach is applied by increasing the res-
olution of the control lattice one step in each direction at
a time starting from a grid of � � �. The contours come
closer to each other iteratively until the steady state is reached.
The displacement field is achieved with an average error of
���	

��. Errors of the displacement fields are plotted ver-
sus the curve parameterization allowing a follow up of the
error distribution over the whole shape boundary.
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(a) (b) (c) (d)

Fig. 3. Global and local registration of two different CC’s: (a) Initial position, (b) Results after global alignment, (c) Anatomical
correspondences between the source and target shapes, and (d) Grid deformation after elastic registration.

7. CONCLUSION AND FUTURE RESEARCH

We have proposed an implicit �� shape registration prob-
lem. The shapes are implicitly represented by higher dimen-
sional vector distance functions. The vector distance function
is used within an energy formulation that measures the dis-
similarity between the two given contours and a variational
scheme is derived to calculate the registration parameters both
for the global and local cases. The results are promising and
do not need any point correspondences. The accuracy of the
elastic registration is measured against a ground truth model.
This process is the main test to quantify the changes between
normal and autistic structures. In the future, many data sets
will be enrolled to get a conclusion about the main differences
and morphological changes. Also, implementation in 3D will
be taken into consideration.
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