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ABSTRACT

Image magnification has been attracting a great deal of atten-
tion for long, and many approaches have been proposed to
date. Nevertheless, bicubic interpolation is still the standard
approach since it can be easily computed and does not require
a priori knowledge nor a complicated model. In spite of such
convenience, the images enlarged bicubically are blurry, in
particular for large magnification factors. In this paper, we
propose a new method, which is as compact as bicubic inter-
polation, while performing better than it. The key technique
we used in this method is a sampling theorem that preserves
preferential components in input images. We show that, by
choosing the edge enhancement components as the preferen-
tial components, the proposed method performs much better
than bicubic interpolation, with the same, or even less amount
of computation.

Index Terms— Image enhancement, image reconstruc-
tion, interpolation

1. INTRODUCTION

Image magnification is an important basic task of producing
a digital image with a higher resolution than its source im-
age. This is often required in situations such as focusing on
regions of interest, or displaying or printing an image at a
higher resolution than the original data. As seen in the excel-
lent survey of [1], many approaches have been proposed to
date. They include methods using pixel classification [2, 3],
spatial neural networks [4], and sparse derivative prior [5].
These approaches use plenty of appropriate reference images.
However, it is not always that such a large image database is
available. Another interesting approach is use of anisotropic
diffusion [6], but needs lots of extra computations.
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Spline based interpolation is also used widely for image
magnification [7]. These methods perform very well from the
viewpoints of both quality and computational cost.

In spite of these recent studies, bicubic interpolation [8]
is still the standard approach to image magnification. Along
with easy implementation and fast computation, the advan-
tages of this method include the fact that neither a priori
knowledge nor reference image data is necessary. However,
the enlarged images generally appear blurry, especially for
large magnification factors.

In this paper, by relaxing or replacing constraints in bicu-
bic interpolation, we propose a new magnification method,
which performs better than bicubic interpolation, but retains
its compactness. To this end, we use a sampling theorem
that reproduces all pixel values in the original low resolu-
tion image, and reconstructs pre-determinedpreferential com-
ponents in input images perfectly. The preferential compo-
nents dominates the performance of the proposed method. In
this paper, we use the DCT basis as the reconstruction basis,
and edge enhancement components as the preferential com-
ponents. It is shown by simulations using standard images
that the proposed method outperforms bicubic interpolation
with the same, or even less amount of computation.

2. MATHEMATICAL PRELIMINARIES

Let Nx × Ny be the number of pixels in the initial image
from which we obtain a pixel value of the magnified image.
In bicubic interpolation, Nx = Ny = 4. Consider an area
occupied by these NxNy pixels, and set the origin at the top
left corner. The x and y axes are set from the origin to the
right and the bottom, respectively. Without loss of gener-
ality, the sampling interval is considered to be one. Then,
the width and the height of the area become Nx and Ny , re-
spectively. The center of each pixel is denoted by (xnx , yny)
(nx = 1, 2, . . . , Nx, ny = 1, 2, . . . , Ny). Let H be a func-
tion space which consists of all square integrable functions
on [0, Nx] × [0, Ny]. The inner product in H is defined by

〈f, g〉 = 1
NxNy

∫ Nx

0

∫ Ny

0 f(x, y)g(x, y)dxdy.
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3. NEW IMAGE MAGNIFICATION METHOD

3.1. Estimation model

Let f̃(x, y) be a modeling function inH which approximates
a target continuous image f(x, y) in H . In bicubic interpo-
lation, the modeling function is always a cubic polynomial
regardless of the magnification factor, which is denoted by
MR. On the other hand, we use the following model which
varies depending on the factor:

f̃(x, y) =
Kx∑

kx=1

Ky∑
ky=1

ckx,kyϕkx,ky(x, y), (1)

where Kx = �MRNx� and Ky = �MRNy� with �r� denot-
ing the greatest integer not exceeding r. This model is used
so that f̃ can represent details of a target image. Let R be
a subspace spanned by {ϕkx,ky}Kx

kx=1
Ky

ky=1, which we assume
an orthonormal basis inR for simplicity.

A complexmodel can cause an unstable solution. In order
to avoid this problem, we use a type of regularization tech-
niques. This will be discussed in Section 3.4.

3.2. Sampling process

With bicubic interpolation, a pixel value, denoted by dnx,ny ,
is assumed to be f(xnx , yny), which is a value of the continu-
ous unknown target image f(x, y) at a sample point (xnx , yny)
(ideal sampling). However, practical data acquisition devices,
such as CCD or CMOS, have spatial extent, that is a non-
ideal impulse response. Therefore, we consider a generalized
sampling model [9], in which a pixel value is expressed as
an inner product between the target image f and a sampling
function ψnx,ny :

dnx,ny = 〈f, ψnx,ny〉
Let As be the sampling operator defined by

Asf =

⎛
⎜⎜⎜⎝

〈f, ψ1,1〉
〈f, ψ2,1〉

...
〈f, ψNx,Ny〉

⎞
⎟⎟⎟⎠ .

The set ofH consisting in the functions that map to 0 through
As is called the null space of As, and denoted byN .

As usual, we assume the sampling operation to be shift-
invariant: ψnx,ny(x, y) = ψ(x − xnx , y − yny). In order
for this to be theoretically sound in the finite area [0, Nx] ×
[0, Ny], ψ(x, y) is defined to be a function that has periods
Nx andNy along the x and y axes, respectively.

3.3. Number of pixels

The number Nx × Ny of pixels used for magnification by
bicubic interpolation is fixed to 4 × 4. This is because four

parameters are necessary and sufficient to uniquely determine
a cubic polynomial. Since we use the estimation model in
Eq. (1) combined with a regularization technique, we are not
restricted to 4 × 4 pixels. Hence, we set Nx = Ny as 3, 4, 5,
and 6 in simulations later, and evaluate which one is the best
from the viewpoints of both accuracy and computational cost.

3.4. Criterion

With bicubic interpolation, a cubic polynomial is determined
so that it reproduces the center two pixels among 4 pixels, and
the slopes at the two pixels agree with the slopes of lines con-
necting the adjacent two pixels, respectively. This criterion is
not flexible to the change of Nx and Ny . Therefore, in this
paper, we consider a criterion which requests the following
two conditions.

1. Sampling results of f̃ agree with those of f .

2. Predetermined components of f are perfectly recon-
structed in f̃ .

The first condition is expressed as

〈f̃ , ψnx,ny〉 = 〈f, ψnx,ny〉 (= dnx,ny). (2)

Bicubic interpolation does not request Eq. (2) for pixels at the
both ends, while we do for all NxNy pixels.

The number KxKy of the terms of f̃ is mostly greater
thanNxNy becauseMR > 1. In this case, the first condition
does not uniquely determine f̃ . Then, we introduce a second
condition in order to regularize the problem. Let {φ (i)

m }M
m=1

(M ≤ NxNy) be preferential components which are linear

combinations of {ϕkx,ky}Kx

kx=1
Ky

ky=1 in Eq. (1):

φ(i)
m (x, y) =

Kx∑
kx=1

Ky∑
ky=1

c
(m)
kx,ky

ϕkx,ky(x, y), (3)

These components are members ofR, but must not belong to
N . Assume that {φ(i)

m }M
m=1 are specified in advance.

If M = NxNy , then a linear combination of {φ(i)
m }M

m=1

which satisfies Eq. (2) is unique. On the other hand, ifM <
NxNy , then there still remains a degree of freedom. Hence,

we choose NxNy − M functions {φ(c)
m }NxNy

m=M+1, which are

members of R but do not belong to N , so we estimate f̃ by
a linear combination of totallyNxNy functions of {φ(i)

m }M
m=1

and {φ(c)
m }NxNy

m=M+1. There can be various ideas about how to

determine these functions. In this paper, we decide {φ (c)
m }NxNy

m=M+1

so that these functions are orthogonal to bothN and the sub-
space spanned by {φ(i)

m }M
m=1.

The problem of constructing f̃(x, y) that satisfies the afore-
mentioned conditions is a problem of sampling addressed by
the first author in [10]. As discussed in this article, f̃ is the
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(a) Original image (c) Proposed (M = 9,Nx = 3) (e) Proposed (M = 25,Nx = 5) (g) Bicubic interpol.

(b) Downsampled image (d) Proposed (M = 16,Nx = 4) (f) Proposed (M = 36,Nx = 6) (h) Cubic spline interpol.

Fig. 1. Simulation results for the Barbara image with various methods (see text).

oblique projection of f along N onto a subspace spanned by
{φ(i)

m }M
m=1 and {φ(c)

m }NxNy

m=M+1. This is the essential reason
why the preferential components are perfectly reconstructed.

The oblique projection is constructed with the coefficients
{ckx,ky}Kx

kx=1
Ky

ky=1 in Eq. (1), which are obtained as follows.
Let c and d be vectors whose kx+(ky−1)Kx and nx+(ny−
1)Nx elements are ckx,ky and dnx,ny , respectively. LetB and

C be the cross-correlationmatrix between {ϕkx,ky}Kx

kx=1
Ky

ky=1

and {ψnx,ny}Nx
nx=1

Ny

ny=1, and a KxKy ×M matrix that con-

sists of c(m)
kx,ky

in Eq. (3), respectively. The adjoint matrix and
theMoore-Penrose pseudo inverse of matrix T are denoted by
T ∗ and T †, respectively.

Theorem 1 [10] Let U be a matrix defined by

U = B∗ + CC†B∗ − B†BC(C∗B†BC)†C∗B∗.

The function f̃ reconstructed by Eq. (1) with

c = U(BU)†d

satisfies Eq. (2), and perfectly reconstructs the predetermined
components {φ(i)

m }M
m=1 and {φ(c)

m }NxNy

m=M+1.

Once f̃ is determined, the pixel value hγ,η in the high
resolution image is obtained by the inner product 〈 f̃ , ξγ,η〉,
where ξγ,η(x, y) is the sampling function for high resolution
image. This inner product is simply computed by

hγ,η =
Nx∑

nx=1

Ny∑
ny=1

α
(γ,η)
nx+(ny−1)Nx

dnx,ny , (4)

2 4 6 8 10 12 14 16 18 20
22.5

23

23.5

24

24.5

25

25.5

Nx = 3 Nx = 4 Nx = 5 Nx = 6 BC CS
Fig. 2. PSNR values (dB) for the resizing experiments on the
Barbara image.

where α(γ,η)
nx+(ny−1)Nx

is the element of the vector α(γ,η) =
(U∗B∗)†U∗Arξγ,η.

4. SIMULATIONS

We now present simulation results of the proposed method.
The standard image shown in Fig. 1 (a) was used in the sim-
ulation. This image was downsized by a factor of two using
2× 2 averaging. The resultant image is shown in (b). Magni-
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fication was performed on this image.
In the proposed method, we used the DCT basis as the

reconstruction functions {ϕkx,ky}Kx

kx=1
Ky

ky=1. That is, by using

ϕkx(x) =

⎧⎨
⎩

1 (kx = 1),
√

2 cos
(kx − 1)πx

lx
(kx = 2, . . . ,Kx),

and the similarly defined ϕky (y), the reconstruction function
ϕkx,ky(x, y) is given by ϕkx(x)ϕky (y). Since the DCT basis
is orthonormal, we can use Theorem 1.

Sampling functions are assumed to beψ(x, y) = ψ(x)ψ(y),
where

ψ(x) =
{

pL (|x| ≤ rL),
0 (|x| > rL). (5)

The sampling function for high resolution image is the same
as Eq. (5) except that its support is half of rL and the constant
value in the support is twice of pL. These parameters are set
to be rL = 1/2 and pL = 1/(2rL).

Let φ̃kx,ky be functions defined by φ̃1,1(x, y) = 1, and

φ̃kx,ky(x, y) =
√

2 cosπ
(
kx − 1
lx

x+
ky − 1
ly

y

)

for kx > 1 or ky > 1. These functions represent fringe
patterns with angles determined by kx and ky , and hence
well approximate edge boundaries in images. Unfortunately,
these functions do not belong to Vr. Hence, we used or-
thogonal projections of φ̃kx,ky onto Vr as preferential compo-

nents {φ(i)
m }M

m=1. More precisely, since we can specify up to
NxNy components, we used orthogonal projection of { φ̃1,1}
(M = 1), {φ̃1,1, φ̃2,1, φ̃1,2, φ̃2,2} (M = 4), · · · , and {φ̃1,1,

φ̃2,1, φ̃1,2, . . . , φ̃Nx,Nx} (M = N2
x ). For comparison, we also

magnified the downsized image by bicubic interpolation (BC)
and cubic spline interpolation (CS).

The PSNR values in dB obtained by the proposed meth-
ods with M = 1, 4, . . . , N 2

x for each Nx = 3, 4, 5, 6 are
shown in Fig. 2, with ones by bicubic interpolation and cubic
spline interpolation. The horizontal axis shows the methods
(the proposed methods with different M and Nx, BC, and
CS), while the vertical axis shows the corresponding PSNR
values. We can see that the PSNR value increases as M in-
creases for each Nx. The magnified image by the proposed
method withM = N 2

x and Nx = 3 ∼ 6 are shown in (c) ∼
(f), respectively. We can see that the texture pattern is clearly
reconstructed in every image. Although the PSNR values are
a little different ones from the others, the subjective visual
quality is quite similar. The magnified images by bicubic in-
terpolation and cubic spline interpolation are shown in (g) and
(h), respectively. Bicubic interpolation does not reconstruct
the texture pattern. Cubic spline interpolation reconstructed
it better than bicubic interpolation, but somehow yielded a
smaller PSNR value.

As shown in Eq. (4), the proposed method needs NxNy

multiplications irrespective ofM to produce one pixel in the

magnified image. This means that the proposed method with
Nx = 4 is done by the same amount of computation as bicu-
bic interpolation. Further, that withNx = 3 needs less amount
of computation. Hence, we can conclude that the proposed
methods achieve better image magnification with the same or
even less amount of computation.

It is worthy to note that the edge enhancement functions
as the preferential components work very effectively for tex-
ture regions with structured patterns like the stripes in our test
image. However, the preferential components have generally
to be chosen appropriately, depending on the local character-
istics of the image (in our test, the eyebrow with orientation
different from the stripes appears aliased).

5. CONCLUSION

We proposed an image magnificationmethod based on a sam-
pling theorem that preserves preferential components in in-
put images. We showed that, by choosing edge enhance-
ment functions as the preferential components, the proposed
method performs much better than bicubic interpolation with
less computational cost. We are currently focusing on the
problem of determining the preferential components automat-
ically depending on local characteristics of the image.
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