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ABSTRACT 
 
Although the topic of Super-Resolution Reconstruction (SRR) has 
recently received considerable attention within the traditional 
research community, the SRR estimations are based on L1 or L2 
statistical norm estimation. Therefore, these SRR methods are very 
sensitive to their assumed data and noise models, which limit their 
applications. The real noise models that corrupt the measure 
sequence are unknown; consequently, SRR algorithm using L1 or 
L2 norm may degrade the image sequence rather than enhance it. 
The robust norm applicable to several noise and data models is 
desired in SRR algorithms. This paper proposes an alternate SRR 
approach based on the stochastic regularization technique of 
Bayesian MAP estimation by minimizing a cost function. The 
Lorentzian norm is used for measuring the difference between the 
projected estimate of the high-resolution image and each low 
resolution image, removing outliers in the data. Tikhonov 
regularization is used to remove artifacts from the final result and 
improve the rate of convergence. In order to cope with real 
sequences and complex motion sequences, the fast affine block-
based registration is used in the registration step of SRR. The 
experimental results show that the proposed reconstruction can be 
applied on real sequences such as Suzie sequence and confirm the 
effectiveness of our method and demonstrate its superiority to 
other super-resolution methods based on L1 and L2 norm for 
several noise models such as AWGN, Poisson and Salt & Pepper 
noise. 
 
Index Terms— SRR, Stochastic Regularization Technique, 
Lorentzian Norm, Affine Block-Based Registration. 
 

1. INTRODUCTION 
 

SRR is considered to be one of the most promising techniques 
that can help overcome the limitations of optics and sensor 
resolution. In general, the problem of super-resolution can be 
expressed as that of combining a set of aliased, noisy, low-
resolution, blurry images to produce a higher resolution image or 
image sequence. The idea is to increase the information content in 
the final image by exploiting the additional spatio-temporal 
information that is available in each of the LR images.  

This section presents the literature review regarding for SRR 

estimation because the SRR estimation is one of the most 
importance parts of the SRR and directly impacts the SRR 
performance. R. R. Schultz and R. L. Stevenson [12-13] proposed 
the SRR algorithm using ML estimator (L2 Norm) with HMRF 
Regularization in 1996. In 1997, M. Elad and A. Feuer [6] 
proposed the SRR algorithm using the ML estimator (L2 Norm) 
with nonellipsoid constraints. M. Elad and A. Feuer [8] proposed 
the SRR algorithm using R-SD and R-LMS (L2 Norm) in 1999. M. 
Elad and A. Feuer [7] proposed the fast SRR algorithm using ML 
estimator (L2 Norm) in 2001. The warps are pure translations, the 
blur is space invariant and the same for all the images, and the 
noise is i.i.d. Gaussian. A. J. Patti and Y. Altunbasak proposed [1] 
a SRR algorithm using ML (L2 Norm) estimator with POCS-based 
regularization in 2001 and Y. Altunbasak, A. J. Patti, and R. M. 
Mersereau [20] proposed a SRR algorithm using ML (L2 Norm) 
estimator for the MPEG sequences in 2002. D. Rajan and S. 
Chaudhuri [2-3] proposed SRR using ML (L2 Norm) with MRF 
regularization to simultaneously estimate the depth map and the 
focused image of a scene in 2003. S. Farsiu and D. Robinson [15-
16] proposed SRR algorithm using ML estimator (L1 Norm) with 
BTV Regularization in 2004. Later, they propose a fast SRR for 
color images [17] using ML estimator (L1 Norm) with BTV and 
Tikhonov Regularization in 2006. 

For the data fidelity cost function, all the above super-
resolution restoration methods [1-20] are based on the simple 
estimation techniques such as L1 Norm or L2 Norm Minimization. 
Therefore, these SRR methods are very sensitive to their assumed 
data and noise models. The success of SRR algorithm is highly 
dependent on the model accuracy regard the imaging process. 
These models do not always represent the actual imaging process, 
as they are merely mathematically convenient formulations of 
some general prior information. When the data or noise model 
assumptions do not faithfully describe the measure data, the 
estimator performance degrades. Furthermore, existence of outliers 
defined as data points with different distributional characteristics 
than the assumed model will produce erroneous estimates. Most 
noise models used in SRR algorithm are based on AWGN  model 
at low power therefore SRR algorithms can effectively apply only 
on the image sequence that is corrupted by AWGN. With this 
noise model, L1 norm or L2 (quadratic) norm error are effective. 
For normally distributed data, the L1 norm produces estimates 
with higher variance than the optimal L2 norm. On the other hand 
the L2 norm is very sensitive to outliers and noise because the 
influence function increases linearly and without bound. The real 
noise models that corrupt the measured sequence are unknown; 
consequently, SRR algorithm using L1 norm or L2 norm may 
degrade the image sequence rather than enhance it. Therefore, the 
robust norm which is applicable to several noise and data models is 
desired in SRR algorithms. From the robust statistical estimation 
study [10], Lorentzian Norm is more robust than L1 and L2. 
Lorentzian norm is also capable of outlier rejection. The norm 
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must be more forgiving on outliers; that is, the error is increased 
less rapidly than L2. In this paper, we propose a robust iterative 
super-resolution reconstruction (SRR) algorithm using Lorentzian 
norm for the data fidelity cost function with Tikhonov 
Regularization. Whereas the data fidelity using Lorentzian norm is 
responsible for robustness and edge preservation while Tikhonov 
Regularization seeks robustness with respect to blur, outliers, and 
other kinds of errors not explicitly modeled in the fused images. 
Due to complex motion in the real sequences, the fast affine block-
based registration [19] is used for registration. We show that our 
method’s performance is superior to the technique proposed earlier 
[4-13], [15-17]. 

The organization of this paper is as follows. Section 2 reviews 
the main concepts of robust estimation technique in SRR 
framework using L1 and L2 error norm with Tikhonov 
Regularization. Section 3 introduces our proposed robust super-
resolution reconstruction using Lorentzian error norm 
minimization with the affine block-based registration. Section 4 
outlines the proposed solution and presents the comparative 
experimental results obtained by using the proposed Lorentzian 
norm method and by using the conventional L1 and L2 norm 
method. Finally, Section 5 provides the conclusion. 
 

2. INTRODUCTION OF SRR 
 

Assume that low-resolution frames of images {Y(t)} are our 
measured data and each frame contains N1 N2 pixels. A high-
resolution frame X(t) is to be estimated from the low-resolution 
sequences and each frame contains qN1 qN2 pixels, where q is an 
integer-valued interpolation factor in both the horizontal and 
vertical directions. To reduce the computational complexity, each 
frame is separated into overlapping blocks. For convenience of 
notation, all overlapping blocked in a frames will be presented a 
column, lexicographically ordered. Namely, the overlapping 
blocked LR frame is 2M

kY  ( 2 1M ) and the overlapping 

blocked HR frame is 2 2q MX  ( 2 2 21 or 1L q M ). We assume 
that the two images are related via the following equation: 

 
 ; 1, 2, ,k k k k kY D H F X V k N  (1) 

 
The matrix 

kF   stands for the geometric warp between the 
images X  and 

kY , 
kH  is the blur matrix which is space and time 

invariant, 
kD  is the decimation matrix and 

kV  is the system noise.  
Super resolution is an ill-posed problem [4–7]. For the under-
determined cases, there exist an infinite number of solutions which 
satisfy (1). The solution for square and over-determined cases is 
not stable that means small amounts of noise in measurements will 
result in large perturbations in the final solution. Therefore, 
considering regularization in super-resolution algorithm as a means 
for picking a stable solution is required. The regularization can 
help the algorithm to remove artifacts from the final result and 
improve the rate of convergence. 

 
2.1. SRR using L1 Norm with Regularized Function 

A popular family of estimators in SRR is the L1 Norm 
estimators [4-7]. A regularization term compensates the missing 
information with some general prior information about the 
desirable HR solution, and is usually implemented as a penalty 

factor in the generalized minimization cost function. This 
estimator is defined in the SRR as follows: 
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The classical and simplest regularization cost functions is the 
Laplacian regularization [16] where the Laplacian kernel is defined 
as  
 1
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By the steepest descent method, the solution of equation (2) is 
defined as follows. 
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where  is a scalar defining the step size in the direction of the 
gradient. 

 
2.2. SRR using L2 Norm with Regularized Function 

Another popular family of estimators in SRR is the L2 Norm 
estimators [12-13]. This estimator is defined in the super resolution 
context with the combination of the Laplacian regularization as 
follows: 
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By the steepest descent method, the solution of equation (5) is 
defined as 
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3. THE PROPOSED SRR ALGORITHM 

 
3.1. SRR using Lorentzian Norm with Regularized Function 

This paper proposes SRR using Lorentzian norm [10] that is 
more robust than L1 and L2 norm. The definition of this estimator 
is defined in the super resolution context as the following 
minimization problem: 
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where T  is Lorentzian constant parameter. By the steepest descent 
method, the solution of equation (9) is defined as 
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3.2. The Fast Affine Block-Based Registration for SRR [19] 
The traditional assumption of the only translation in the 

registration limits the SRR to the sequences that have simple 
translation motion. In order to apply the proposed systems to the 
general sequences, the proposed SRR uses a high accuracy 
registration algorithm, the fast affine block-based registration [19]. 
In this section, we propose a scheme for estimating affine block-
based motion vectors suitable for several complex motions. The 
estimation can be separated into 2 stages. In the first stage of the 
estimation algorithm, the current and reference frames are divides 
into 50% overlapping blocks (16x16). This stage divides the image 
into small areas in order to detect and estimate the local motions. 
The advantage of the block processing is the reduction of the 
computational load and the possibility of parallel processing. In the 
second stage, the affine motion vector of each block between the 
current and reference frame is computed by the M3SS (Modified 
Three Step Search). The M3SS is proposed to reduce a very high 
computational load in affine motion vector estimation. The M3SS 
is designed based on the popular 3SS (Three Step Search. 

For the 7x7 displacement window (translation deformation) and 
20  degree (rotation, extraction or expansion deformation), the 

proposed M3SS algorithm utilizes a search pattern with 36 = 729 
check points on a search window in the first step. The point having 
the minimum error is used as the center of the search area in the 
subsequent step. The search window is reduced by half in the 
subsequent step until the search window equals to Equation (11). 
(The values of the parameters in this paper give the highest PSNR 
in the experiments of the following 3 standard sequences: 
Foreman, Carphone and Stefan) 

 
 , , , , , [ 0.01, 0.01, 0.125 0.01, 0.01, 0.125]a b c d e f  (11) 

 
From [19], the total number of the M3SS check points is fixed at 

3.65E+3. Compared with the classical block-based estimation 
method (translation block-based estimation method) at 0.25 pixel 
accuracy and w=9, the total number of the M3SS check points has 
approximately 3 times more than the classical FS (Full-Search) 
approach but the PSNR performance of the M3SS method is 5-6 
dB higher than that of the classical translational method. 
 

4. THE EXPERIMENTAL RESULT 
 

This section presents results obtained by the super-resolution 
method using the fast affine block-based registration. The 
experiment was implemented in MATLAB and the block size of 
LR images is fixed at 8x8 (16x16 for overlapping block) and the 
search window (w) is 7 for affine block-based registration [19] and   
5 Frames for ML estimation process. We used Susie sequence as 
our test sequences. The sequences are in QCIF format and has 
complex-edge characteristic. Then, to simulate the effect of camera 
PSF, the images were convolved with a symmetric Gaussian low-
pass filter with the size of 3x3 and the standard deviation of one. 
The blurred images were subsampled by the factor of 2 in each 
direction (88x72) and the blurred subsampled images were 

corrupted by Gaussian noise. The criterion for parameter selection 
in this paper was to choose parameters which produce both most 
visually appealing results and highest PSNR. Therefore, to ensure 
fairness, each experiment was repeated several times with different 
parameters and the best result of each experiment was chosen. 

The first experiment was performed on three AWGN corrupted 
images at SNR=20, 17.5 and 15 dB. The original HR image is 
shown in Fig. 1(a-1) – 1(c-1). The corrupted image (40th frame) is 
showed in Fig. 1(a-2) – 1(c-2). The Lorentzian estimator gave the 
higher PSNR than L1 and L2 estimator in all cases. The result of 
L1, L2 and Lorentzian norm estimator at SNR=20dB are shown in 
Fig. 1(a-3), Fig. 1(a-4) and Fig. 1(a-5), respectively. The result of 
L1, L2 and Lorentzian norm estimator at SNR=17.5dB are shown 
in Fig. 1(b-3), Fig. 1(b-4) and Fig. 1(b-5), respectively and the 
result of L1, L2 and Lorentzian norm estimator at SNR=17.5dB 
are shown in Fig. 1(c-3), Fig. 1(c-4) and Fig. 1(c-5), respectively 

The second experiment was performed on a Poisson noise 
corrupted images. The original HR image is shown in Fig. 1(d-1) 
and the corrupted image (40th frame) is shown in Fig. 1(d-2). The 
Lorentzian estimator gave the higher PSNR than L1 and L2 
estimator result. The result of L1, L2 and Lorentzian norm 
estimator for Poisson Noise are shown in Fig. 1(d-3), Fig. 1(d-4) 
and Fig. 1(d-5) respectively. 

The last experiment was performed on a Salt&Pepper noise 
corrupted images at D=0.015. The original HR image is shown in 
Fig. 12(e-1) and the corrupted image (40th frame) is shown in Fig. 
1(e-2). The Lorentzian estimator also gave the higher PSNR than 
L1 and L2 estimator result. The result of L1, L2 and Lorentzian 
norm estimator for Poisson Noise are shown in Fig. 1(e-3), Fig. 
1(e-4) and Fig. 1(e-5) respectively. 

 
5. CONCLUSION 

In this paper, we propose an SRR algorithm using a novel 
robust estimation norm function for SRR framework and fast 
affine block-based registration with Tikhonov Regularization. The 
proposed SRR can be applied on image corrupted by the several 
noise models and can be applied on the real complex sequence 
such as Susie sequence. Experimental results clearly demonstrated 
that the proposed algorithm the proposed algorithm is robust 
against several noise models (AWGN, Poisson and Salt & Pepper 
noise). The proposed algorithm obviously improves the result in 
using both the PSNR and virtualization measurements. 
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(a-1),(b-1), ...,(e-1)
Original HR Image

(Frame 40)

(a-2) Currupted LR Image (AWGN:SNR=20dB)
(PSNR=27.5740dB)

(a-3) L1 SRR Image (PSNR=29.1304dB)
0.50, 1.0

(a-4) L2 SRR Image (PSNR=28.3754dB)
0.50, 1.0

(a-5) Lor. SRR Image (PSNR=29.4753dB)
0.50, 1.0, 3T

(b-2) Currupted LR Image (AWGN:SNR=17.5dB)
(PSNR=25.7765dB)

(b-3) L1 SRR Image (PSNR=28.0193dB)
0.50, 1.0

(b-4) L2 SRR Image (PSNR=27.0041dB)
0.50, 1.0

(b-5) Lor. SRR Image (PSNR=28.6284dB)
0.50, 1.0, 3T

(c-2) Currupted LR Image (AWGN:SNR=15dB)
(PSNR=23.7393dB)

(c-3) L1 SRR Image (PSNR=26.6879dB)
0.50, 1.0

(c-4) L2 SRR Image (PSNR=25.2707dB)
0.50, 1.0

(c-5) Lor. SRR Image (PSNR=27.7016dB)
1.0, 0.50, 1T

(d-2) Currupted LR Image (Poisson)
(PSNR=27.9892dB)

(d-3) L1 SRR Image (PSNR=29.3107dB)
0.50, 1.0

(d-4) L2 SRR Image (PSNR=28.8507dB)
0.50, 1.0

(d-5) Lor. SRR Image (PSNR=29.5506dB)
0.50, 0.50, 3T

(e-2) Currupted LR Image (Salt&Pepper)
(PSNR=25.5210dB)

(e-3) L1 SRR Image (PSNR=27.5187dB)
1.00, 1.0

(e-4) L2 SRR Image (PSNR=26.2784dB)
0.50, 0.75

(e-5) Lor. SRR Image (PSNR=28.4864dB)
1.00, 0.25, 1T

 
Fig. 1: The Experimental Result of Proposed Method 

(The right image on our experiment result of each subfigure is the absolute difference between it’s correspond left image 
to the original HR image. The difference is magnified by 5.) 
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