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ABSTRACT

Formany digital image/video processing applications increas-
ing the spatial resolution throughmodifications in the imaging
system is infeasible. Hence post-processing algorithms de-
signed to enhance resolution of the acquired image data prove
beneficial. In this paper, we analyze recent work on classifi-
cation based resolution enhancement and discuss its applica-
bility to low-complexity display systems. In the light of our
observations we point out certain short-comings of resolution
synthesis and propose a modified training scheme to improve
the performance under certain conditions.

Index Terms— Single-frame resolution enhancement, res-
olution synthesis, scaling

1. INTRODUCTION

Formany digital image/video processing applications increas-
ing the spatial resolution is not only desirable but also highly
beneficial. At higher resolution, TV pictures look more nat-
ural and pleasing to the eye, computer vision tasks such as
object detection and tracking can be performed with higher
precision, medical diagnoses can be made with a higher con-
fidence, security cameras can offer better identification, and
satellite imagery can be interpreted with higher accuracy. As
such, spatial resolution is an influential parameter in many
mainstream imaging applications, and resolution enhancement
task naturally arises as a means of increasing the effective-
ness of any imaging system used in the mentioned applica-
tions. In this work, we analyze recent work on off-line train-
ing based resolution enhancement, namely resolution synthe-
sis by Atkins et. al. [1]. We discuss its applicability to
low-complexity display systems in terms of visual quality and
computational complexity. In the light of our observations we
point out certain short-comings of resolution synthesis and
propose a modified training scheme to improve the perfor-
mance under certain conditions.
Once a digital image is captured, the frequency content

of the image is limited by the resolving power of the image
acquisition system, which is a function of the density of the
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sensor array and the imaging optics. Scaling an image by lin-
ear shift invariant (LSI) filtering can not bring back the high
frequency components degraded (reduced to noise level, com-
pletely filtered out or aliased) during sampling. This is where
resolution enhancement differs from scaling. Resolution en-
hancement methods can be interpreted as advanced scaling
techniques that can recover the missing or aliased high fre-
quency components to a limited extend. Single-frame reso-
lution enhancement techniques can estimate the missing high
frequency components to a limited extend through spatially
adaptive filtering and use of prior information. The main im-
provement offered by single frame resolution enhancement is
observed around edges and textured areas. Compared to the
results obtained by LSI scaling filters such as bicubic interpo-
lation combined with unsharpen filtering, techniques such as
the resolution synthesis algorithm can offer much smoother,
continuous edges with sharp transitions, remove the blurry
look from textured areas and rectify slight aliasing artifacts
(where aliased signal components can not disturb the domi-
nant spatial structure). By fusing information embedded in
multiple aliased frames multi-frame resolution enhancement
techniques can further improve the spatial resolution, bring-
ing back missing details, rectifying heavier aliasing.
Resolution enhancement is an inherently ill-posed prob-

lem that requires extra information. In case of multi-frame
resolution enhancement, typically referred to as superreso-
lution, extra information is mainly extracted from multiple
aliased observations. In case of single-frame resolution en-
hancement we do not have access to multiple frames, hence
we are bound to use prior information. Prior information can
be in the form of a priori distributions in the Bayesian frame-
work or regularization terms in the deterministic approach.
Another way of utilizing prior information is to learn a group
of spatial structures (which we refer to as context classes) fre-
quently observed in natural images and observe the way they
are distorted during high resolution to low resolution conver-
sion (sampling or down-sampling). There are at least two
well-known single-frame resolution enhancement algorithms
that utilize prior information in this format, namely resolution
synthesis proposed by Atkins et. al. [1] and example-based
super-resolution by Freeman et. al. [2]. Resolution synthesis
(RS) is based on pixel classification and adaptive linear filter-

V - 4051-4244-1437-7/07/$20.00 ©2007 IEEE ICIP 2007



ing, and allows for efficient hardware implementation. Since,
our goal is to design a low-complexity resolution enhance-
ment method that can be implemented in the next generation
display systems, we focus on the RS algorithm.
The rest of the paper is organized as follows. Section 2

provides an overview of the RS algorithm, and discusses its
applicability to customer grade flat panel displays. Section 3
details the proposedmodifications to the training scheme, and
finally Section 4 presents visual results.

2. RESOLUTION SYNTHESIS

RS is based on the assumption that pixels in natural images
can be classified as belonging into a limited number of con-
text classes. These context classes are defined by small pixel
neighborhoods that exhibit visually identifiable spatial struc-
tures. To get a better grip on the idea, note that natural images
are structured signals with much less variability than com-
pletely random images. These regularities typically observed
in natural images [3] can be exploited in resolution enhance-
ment problem. However, we recognize the fact that unless
we are working on a highly restricted set of images with very
specific training data, it is not possible to generate the true
high-resolution signal components. Hence, we focus on gen-
erating visually plausible image details, such as sharp edges
without disturbing jaggies, and plausible looking texture.
Next we briefly introduce the RS algorithm, which con-

sists of two phases, namely, training and filtering, as shown
in Figure 1. Training phase essentially computes the interpo-
lation filters and the parameters of a Gaussian mixture model
used to associate the low resolution pixels with all of the
context classes to different degrees of membership. Filter-
ing phase starts with computing the membership degrees of
the input pixel. The output high resolution pixel values are
then computed as a weighted linear combinations of the re-
sults computed by all filters, where the combination weights
are the membership degrees. A detailed analysis of resolution
synthesis can also be found in [4], [5].

Fig. 1. Resolution synthesis algorithm.

Every low resolution pixel g[n1, n2] is assumed to be from
a context class that best explains the spatial structure within
a small local neighborhood centered at g[n1, n2]. Both the
training and filtering phases are based on classifying the in-

put pixel. In an effort to reduce computational complexity
and enhance discrimination performance, every low resolu-
tion pixel is represented by a feature vector y extracted from
a 3 × 3 neighborhood. Pixel classification is performed on
the feature vectors, instead of using all pixels in the neigh-
borhood. To extract the feature vector we first obtain a 8 × 1
vector ỹ by subtracting g[n1, n2] from its neighbors. Then
the feature vector y is computed as the normalized version of
ỹ,

y =

{
ỹ/ ‖ ỹ ‖−p, ỹ �= 0

0, otherwise (1)

where 0 ≤ p ≤ 1 is a parameter that controls the amount of
normalization. p is typically chosen as 0.75, [4]. The func-
tion that maps the input low resolution neighborhood to the
feature vector is of great importance since the feature vec-
tors has great influence on the visual performance of the al-
gorithm. The feature vectors are modeled as random vectors
drawn from a multivariate Gaussian mixture withM mixture
classes, where every Gaussian mixture class corresponds to
a context class. The expectation-maximization (EM) algo-
rithm is applied to compute the maximum likelihood (ML) es-
timates of the Gaussian mixture parameters, namely the class
means (μi), standard deviations (σi) and mixture probabilities
(πi). Once EM converges, we can compute the probability
that any given feature vector belongs to a mixture (context)
class. If these probabilities are interpreted as memberships
than the resulting mixture model provides a fuzzy clustering
of the feature vectors in the training set. New input pixels
are classified by computing the probabilities that their fea-
ture vectors are drawn from a context class (Gaussian mix-
ture classes). Derivation of the RS algorithm is based on the
following assumptions:
Assumption 1: Feature vectors are modeled as a multi-

variate Gaussian mixture,

pY (y) =
M∑

j=1

πjpY |J , pY |J ∼ N (μj , σ
2I)

where j is the mixture class index.
Assumption 2: Given the input low resolution pixel neigh-

borhood and the context class, the high resolution pixels are
Gaussian

pF |G,J(f |g, j) = N (Ajg + βj , σ
2AT

j Aj).

Assumption 3: Given feature vector y, the class distribu-
tion is independent of the high resolution and low resolution
pixels

pJ|F,G(j|f , g) = pJ|Y (j|y).

Under these assumptions the MMSE estimator is [4]

f̂ =

M∑
j=1

(Ajg+βj)
πj exp(− 1

2σ2 ‖ y − μj ‖
2)∑M

i=1
πi exp(− 1

2σ2 ‖ y − μj ‖
2)

.

︸ ︷︷ ︸
wj

(2)
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From Eq. 2 we can see that final high resolution pixel esti-
mates are computed as a weighted linear combination of the
estimates for all context classes.
In its current form, resolution synthesis is computation-

ally too demanding for systems with limited computational
resources andmemory. The high computational load is mainly
due to the large number of classes required for satisfactory
performance (typically anywhere between 30-100) and the re-
quirement for weighted combination (soft filtering). Linear
combination is especially demanding since it requires repeat-
ing application of a 5 × 5 filter, implying 25 additional mul-
tiplications and an additional accumulation for every class in-
cluded in soft filtering. In addition, the combination weights
(wj’s in Eq. 2) must be computed to obtain the final result.
Although Atkins proposes several complexity reductions in
[4], these modifications do not allow for efficient hardware
implementations and require large amounts of on-boardmem-
ory. We observed that directly reducing the number of classes
(below ∼ 30) severely degrades performance. Also using
only one class (the class with maximummembership) to com-
pute the high resolution pixels resulted in degraded perfor-
mance. We found out that the discrimination power of the
feature vectors defined by Eq. 1 was severely degraded as the
number of context classes was reduced below ∼ 25. Features
extracted from 5×5 neighborhoodswith a modified extraction
rule proved to have much higher discrimination power and
performedmuch better under slight aliasing. These shortcom-
ings render resolution synthesis useless for customer grade
flat panel displays, where the computational complexity must
be kept below some threshold. Our goal is to introduce some
modifications so that RS can operate satisfactorily with as low
as 11 context classes using hard decision (using a single class
in filtering).

3. PROPOSED ITERATIVE TRAINING SCHEME

Proposed training method is shown in Figure 2, it is based
on the observation that interpolation filter design stage di-
rect access to the high resolution pixels. We note that due
to Assumption 3 given in Section 2 clustering with respect
to feature vectors (distribution parameter estimation) is com-
pletely uncoupled with filter design and high resolution pixels
are only utilized by interpolation filter design block, which is
executed only once after the convergence of EM algorithm.
Hence, if we can couple interpolation filters to the feature
extraction and classification stages, the resulting clustering
should improve. Given the low and high resolution training
images, proposed method iteratively extracts the best interpo-
lation filters and the context class prototypes that are used to
determine input pixel’s context. The iterative training works
as follows.
0. Initialization

After extracting the feature vectors of all the low resolution
pixels in the training set, class prototypes are initialized ran-

domly. The prototype for class number 1 is manually set to a
vector of all zeros. This guarantees that we have a class num-
ber 1 reserved for uniform areas. All covariance matrices are
set to identity matrices.
1. Clustering with respect to features

After initialization, the low resolution pixels are classified
with respect to their feature vectors, Block 1 in Figure 2. This
is done by going through all low resolution pixels, comput-
ing the weighted Euclidian distance (the weighting matrix is
the inverse of feature covariance matrix) between the pixel’s
feature vector, which is a representative of the local image
characteristic of the low resolution pixel and the cluster pro-
totypes, which are representatives of different context classes.
Then the input low resolution pixel is labeled with the index
of the cluster whose feature vector is the closest to the low
resolution pixel’s feature vector.
2. Filter update

Once the low resolution pixels are clustered with respect to
their feature vectors (context) the interpolation filters for all
clusters are updated with the filter that minimizes the mean-
squared-error between the interpolated and the true high res-
olution pixels computed for all low resolution pixels in a spe-
cific cluster, Block 2 in Figure 2. Tikhonov regularization can
be used to avoid filters that excessively amplify the high fre-
quency components. While preparing the training samples, a
small amount of blurring prior to downsampling is necessary
to model the camera response and also to avoid aliasing. But
completely filtering out the high frequency components effec-
tively creates an inverse problem where the filters are asked
to bring back completely removed signal components (this is
only possible in multi-frame case), resulting in bad filters.
3. Clustering with respect to filters

After filter update, all the input pixels are clustered with re-
spect to the minimum mean-squared-error interpolation filter,
Block 3 in Figure 2. This is accomplished by going through
all low-resolution training pixels, computing the interpolated
high resolution pixels by all interpolation filters one by one,
and comparing the interpolated pixels to the available high
resolution pixels. The low resolution pixel is then labeled
with the index of the interpolation filter that gives the min-
imum mean-squared-error between the interpolated and real
high resolution pixels.
4. Class prototype update

Once all the input pixels are classified, the feature vectors of
the obtained clusters are updated one by one, Block 4 in Fig-
ure 2. This update can be done in various different ways such
as taking the average of the median of the feature vectors.
Class covariance matrices are updated next. To reduce com-
putational complexity, we assume diagonal covariance matri-
ces. Then we go back to clustering with respect to features,
and iterate in this fashion for predetermined times. In our ex-
periments we worked with 2 iterations.
Once the filter coefficients and the feature vectors of all

contexts are learned from training data, these parameters are
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Fig. 2. Proposed training scheme.

passed to the interpolation stage. For a given input pixel, first
the feature vector is extracted and the pixel is hard classified.
High resolution output pixels are obtained by a single filtering
operation using the corresponding optimal filter.

Fig. 3. Original resolution synthesis

4. COMMENTS AND RESULTS

In our experiments (for scaling ratios of 1.5 and 2) we ob-
served that the proposed training scheme can provide satis-
factory visual results with as low as 11 classes and hard deci-
sion. Regions cropped from the results obtained for a scaling
ratio of 2 are presented in Figures 3 and 4. The original RS
algorithm was trained with 11 classes and all 11 classes were
used in the weighted combination. Proposed method was also
trained with 11 classes, but filtering was done with hard deci-
sion (only one filter was used). Both algorithms were trained
on the same training set which consisted of approximately
250000 low-high resolution pixel pairs. We implemented a
fixed point version of the proposed algorithm on an entry level
FPGA (Spartan 3 from Xilinx) and the details of this imple-
mentation will be reported in another publication.
Due to limited space we will not be able to present a de-

tailed analysis of the proposed method here. We note that
further improvements over the algorithm detailed in this pa-
per are possible. It should be clear to the reader that clus-
tering with respect to the filters and clustering with respect
to the features are two different goals which may not agree

Fig. 4. Proposed

for a specific choice of features and filter clustering method.
Although it is possible to come up with a feature extraction
method and a way of clustering pixels with respect to the best
filter that agree for an arbitrarily large percentage of training
pixels, finding such schemes is not straightforward. We have
observed that for the current implementation increasing the
number of iterations corrupted the interpolation filters and the
class prototypes. Through exhaustive computer simulations
we have concluded that clustering with respect to interpola-
tion filters based on minimum MSE is the main reason that
avoids convergence. Pixels in uniform areas are frequently as-
signed to wrong context classes due to their lack of structure
(almost all filters perform good). Additional regularization
terms are required to make clustering with respect to filters
more robust.
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