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Abstract— We propose a new superresolution algorithm based
on a fast motion estimation technique. Two stages of this algo-
rithm, namely, motion estimation and high-resolution reconstruc-
tion, rely on an area-based interpolation scheme that involves in-
tersecting two pixel grids in arbitrary orientation, displacement,
and scaling. We develop a fast approximate solution of the above
problem, whose exact solution is prohibitively expensive. Also,
gradient descent algorithm is used for fast convergence of the
motion estimation algorithm. Experimental results demonstrate
the good performance of the proposed superresolution algorithm
as well its robustness against noise.

Index Terms—Image registration, superresolution, denoising,
gradient descent algorithm.

I. INTRODUCTION

In this paper a fast image registration and reconstruction
algorithm is proposed which obtains a high-resolution (HR)
frame using a number of adjacent low-resolution (LR) frames.
It is assumed that there is only a global motion between the
current frame and the reference frames. Although such an
assumption is simplistic for real videos, algorithms similar
to ours provide an important building block for the more
generalized superresolution problem with local motions and
occlusion [7]. Furthermore, in its current form the algorithm
can be applied to any part of video frames for which motion
can be described by a single model.

Accurate estimation of generalized motion is critical for
superresolution [2] and many other applications. Our main
contribution is a fast generalized motion estimation algorithm.
Unlike available motion estimators [7], [9], which are based on
optical flow, the proposed algorithm directly minimizes the dif-
ference between the current frame pixels and the interpolated
pixels of the motion-compensated reference frame. Gradient
based iterations of the algorithm ensures fast convergence
and accuracy. The algorithm is also robust against high noise
level in video frames. In this paper we also introduce a
fast HR reconstruction algorithm. Both motion estimation and
HR reconstruction rely on area-based interpolation, which is
approximated to speed-up the algorithms. Interested readers
are directed to [1], [2], [3], [10] for detailed surveys on image
registration and superresolution.

II. SUPERRESOLUTION ALGORITHM

In this work superresolution is achieved in two steps: motion
estimation and estimation of high-resolution pixel values.
The first step involves solving a non-convex optimization
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problem, while the second step can be formulated as a convex
(linear quadratic) optimization problem by proper choice of
regularization.

A. Motion Estimation

We perform motion estimation in three steps: feature selec-
tion in the current frame, initial translation motion estimation
by block matching to narrow the search range, and generalized
motion estimation in real-value precision by modified Newton-
Raphson method.

1) Feature Selection: Smooth regions of video frames, due
to lack of features, do not have discrimination power in motion
estimation. Such regions can be safely disregarded in the
motion estimation without loss of precision. This significantly
reduces the computational complexity. In this work feature
selection is performed only in the current frame. Motion
estimation is done by matching selected pixels (with features)
of the current frame with pixels of the reference frames.

We extract large-scale edges as good reliable features. The
edge map is subject to an erosion operation to exclude isolated
pixels selected by the high-pass edge detector because there is
a high possibility that the corresponding features have noise
origin. This is followed by a dilation step to allow pixels
adjacent to the edges to participate in motion estimation. The
last step is intended to make the algorithm robust against
inaccurate edge detection. For video frames with negligible
noise the edge detection step can be replaced by inexpensive
high-pass filtering and thresholding. We found that less than
1/20 th of the total number of pixels can be selected for very
accurate registration of video sequences.

2) Block Matching: The non-convexity of generalized mo-
tion estimation problem makes gradient descent algorithms
susceptible to the local minima. To avoid this, in our current
work, an initial translation motion estimation is performed
to ensure that the starting point for the generalized motion
estimation is sufficiently close to the global minima. Let z(¢, j)
be the pixel value at grid coordinates (4, j) in the current frame
and xy(7,7) the pixel value of the kth reference frame. In
addition, let I be the set of the pixels of the current frame
selected by the feature selection step. Then the block matching
problem between the current frame and the kth reference
frame can be described as

3 (eling) —anli+dij+d3)* ()
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The cross-search algorithm [5] is applied for fast implemen-
tation of block matching.

3) Generalized Motion Estimation: The problem of esti-
mating motion parameters between the current frame and & th
reference frame can be expressed as

Hl’UiIlJQ = Z (I(Zy,]) - IS [fk(7'7.77 U)vv])Q

i,j€l
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where fi(i,7,v) defines the location of pixel (i,7) of the
current frame on the grid of the kth reference frame. This
mapping depends on the value of motion parameter vector
v. Dimension of v depends on the global transformation
model. For example, v consists of four parameters if rigid
body motion is assumed, six parameters is affine model is
assumed, and eight parameters if perspective projection model
is assumed. The function x* [fy(7,,v),v] is an estimate (or
interpolation) of z(%,;j) using the pixels of the kth refer-
ence frame, fi(i,7,v) and v. Dependence of x*[.,.] on v is
explained as follows. Let us assume two candidate motion
parameter vectors v; and v, with the scaling parameter in vy
being twice of that in vo. The estimate of x (4, j) should not be
the same in these two cases even if fi (4,7, v1) = fr(i, 7, v2)
because v; and vy suggests different degree of blurring.

Fig. 1. Location of a pixel of the current frame on the grid of a reference
frame.
Different interpolation functions z:%[.,.] may be considered.

In this work we choose area-based interpolation. This interpo-
lation can be explained by Fig. 1 which shows the position of
one pixel of current frame on the grid of a reference frame.
If z; is the intensity value of pixel ¢ shown in Fig. 1 and a;
is its area of overlap with the pixel of the current frame, then
the estimated intensity value of the pixel of the current frame

is given by
. 1g
i=1

where A is the area of the pixel of the current frame on
the grid of the reference frame. This interpolation method is
optimal if box point spread function (PSF) and no correlation
between neighboring pixels are assumed. Similar area-based
interpolation is considered in [8] but for translational motion
only.

However, for generalized motion which may consist of
rotation, scaling, and shear, the computation of the areas of
overlap, a; in Fig. 1 is nontrivial and expensive. We propose
an approximation algorithm for computing a;. Consider only
translational motion as shown in Fig. 2. In this case given the
center of the pixel in question, it is inexpensive to compute
the areas of overlap and, in turn, the estimated pixel value.

3

Fig. 2. Location of a pixel of the current frame on the grid of a reference
frame assuming only translation.

In fact, the area-based interpolation is same as the bilinear
interpolation for upright pixel placement. It can be argued
that since the motion between two neighboring video frames
can be assumed to be small, the difference between bilinear
interpolation and area-based interpolation is negligible when
only rigid body motion is considered. For example Fig. 3(a)
shows the current frame pixels on a reference grid when
motion between the frames is translation and rotation. Fig. 3(b)
shows our approximation for interpolation. Unlike the popular
block-based motion estimation approach, the proposed method
uses different interpolation coefficients for adjacent pixels to
account for motions that are more complex than translation.
The new technique strikes a good balance between complexity
and estimation accuracy by finding a middle ground between
oversimplified block-based translational motion estimation and
the expensive exact solution. In addition, for non-rigid body

Fig. 3. Translated and rotated current-frame pixels on a reference grid; (a)
true pixel location, and (b) our approximation.

motion, approximate height and width of the projected pixels
can be computed for more accurate results.

In general cost function J, in (2) is non-convex. However,
if the initial guess is close to the global minima a gradient
descent algorithm can still be applied. Since the motion
between two neighboring video frames can be assumed to be
small, the block matching step can generate a good initial
guess. In this work a modified Newton-Raphson method is
applied for solving the optimization problem in (2). If V,,(.J2)
is the gradient of the cost function w.r.t. motion parameter
vector v and V2(.Jy) is the corresponding Hessian, then one
iteration of the modified Newton-Raphson algorithm is given
by )

Un4+1 = Un — Qn41 V%)",(Jz) YV, (J2)

4)

where v,, and v, 41 are the estimated motion vectors in the n th
and (n + 1) th iteration, respectively, and cv,+; is a constant
such that 0 < «a,4+1 < 1. The algorithm starts with initial
estimate vy obtained by block-matching. The following steps
are required in each iteration

1. Compute J(vg), Vo, (J2) and V2 (J2).
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2. Setn=0and & = 1.
3. Compute & = v, — & V2 (J2) 'V, (J2). Reduce & if
0 violates any bound on parameters and re-compute 0.
4. If absolute value of ¥ — v, is too small for all parameters,
set v, as the solution. Done.
5. Compute J2(9), V(J2) and VZ(.J2).
6. If Jo(0) < Ja(vy), set vpy1 = 0 and ayy1 = G. Go to
step 9.
7. & =a/4d.
8. Compute ¥ = v, —& V3, (J2) ~'V,, (J2) and go to step
4,
9. If Jo(vy) — J2(Un41) < t1 and max {abs (V2 (J2))} <
ta, set v,41 as the solution. Done.
10. n=n+1.
11. & =2a,. If @ > 1, then set @ = 1. Go to step 3.
The thresholds ¢; and ¢, are predefined. The algorithm con-
verges within less than 10 function evaluations for all video
sequences we experimented on.

B. Superresolution Restoration

Let z! be the pixel values of the kth reference frame in
lexicographic order and z}, be the pixel values of the current
frame in lexicographic order. We define a vector

x! = (@), (@), (@) 5)
where N is the number of reference frames. Let x” denote the
HR pixel values, which are to be estimated, in lexicographic
order and let F' denote a linear interpolation matrix. Each
row of F' consists of the linear interpolation coefficients that
are used along with x” to estimate the same row element
in x'. I is a function of the motion between each LR
frame w.r.t. the HR frame. Given the above notations and
assuming that the interpolation error for each pixel in x! be
zero mean, independent identically distributed and Gaussian,
the optimization problem for superresolution reconstruction is
given by

mxan Js = (Fxh — xl)/ (Fxh — xl) + A (xh)/ B'Bx" (6)

where A (xh)/ B’ Bx" is the regularization term. This problem
formulation is similar to that in [4] where separate decimation
operator, blur matrix and warp matrix are used instead of their
combined form given by F'. Next, we discuss the choice of F’
and the iterative procedure for estimating x".

1) Fast Interpolation Algorithm: The area-based interpo-
lation method, based on box PSF assumption, is used in
this work for estimating each pixel value in each of the LR
frames using the pixels of the HR frame. The interpolation
coefficients define the rows of F. As discussed in this section,
accurate area-based interpolation is computation-intensive and
unsuitable for video processing applications. Next, we discuss
an approximate interpolation algorithm similar to the one used
in motion estimation.

Given that the motion between neighboring video frames is
small, the boundaries of each pixel of low resolution frames
may be assumed to form a square on the high resolution grid
with sides in perfect alignment with the grid axes (see Fig. 4).

S
[

Fig. 4. Approximate boundary of a LR pixel on a HR grid.

Note that for non-rigid motion a rectangle will be a better
approximation. The interpolation coefficients corresponding
to a LR pixel are proportional to its areas of overlap with
HR pixels. The resulting computation is much simpler than
computing exact coefficients for area-based interpolation. In
Fig. 4 approximate LR pixel location is shown on a HR grid
which corresponds to a factor-two scale-up in resolution.

To compute the approximate interpolation coefficients, for
each LR pixel, in the simplest case, one needs to compute
the position of its center on the high-resolution grid. Note
that motion estimation is done on a small fraction of the total
number of pixels, whereas for HR reconstruction all of the
pixels are needed to be considered. Hence, the computation
of interpolation coefficients in the reconstruction stage is the
bottleneck of this superresolution algorithm. Computation of
F' can be parallelized for fast implementation. Furthermore,
computational cost can be significantly reduced by assuming
fixed interpolation coefficients for a block of pixels when the
resolution of the LR video frames is to be scaled up by
an integer factor. In this case interpolation coefficients are
computed only for a pixel near the center of the block. Other
pixels in the block are assumed to have the same coefficients
in their shifted overlap region. Size of the block is defined by
the maximum acceptable error in computing the location of
a pixel. In our work 5 x 5 pixel blocks are used without any
significant reconstruction performance degradation.

2) Iterative HR Frame Estimation Procedure: The opti-
mization problem in (6) has a closed-form solution given by

x" = (F'F + AB'B)"'F'x! 7

However, it involves computationally-expensive large-
dimensional matrix inversion. Hence, in this work we use
iterative steepest descent method [4], [6]. The steps of the
algorithm are given by

1. Setn =0.
Initialize x} with results from bilinear interpolation.
Z = F'x' — (F'F 4+ A\B'B)x".

_ z'z
H= ZFFF\B'B)Z"
X1 =X+ pZ.
If max {abs (x/2,, —x")} > t3, set n = n+1 and go
to step 3.
7. Set x! ., as the result. Done.

N N

III. EXPERIMENTAL RESULTS

Representative samples of our superresolution results are
shown in Fig. 5-8. Fig. 5 shows that the approximation to the
area-based interpolation used in registration and superresolu-
tion reconstruction does not change the quality of the output.
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{a)

i)

Fig. 5. Result on Car sequence; (a) original, (b) bicubic interpolation, (
superresolution result using exact area-based interpolation, and (d) superre
olution result using our approximation.

{a) {b}

Fig. 6. Results on Italian Wedding sequence; (a) bicubic interpolation, and
(b) our superresolution result.

In each case, nine neighboring frames are used for upconvert-
ing the current frame by a factor of two. A rigid body motion
is assumed and corresponding four parameters are estimated
in the registration stage. The true motions are as follows;
translation and scaling in the Car sequence, translation in
Italian Wedding, rotation and translation in Foreman sequence,
and translation and scaling in Calender sequence. Fig. 6
shows robustness against noise of the registration algorithm
and denoising capability of the superresolution reconstruction
algorithm.

IV. CONCLUSIONS

A fast-motion-estimation based superresolution algorithm is
proposed for video frames. The results show that temporal
processing produces far superior results compared to single
frame approach. In addition, robustness of the superresolution
algorithm is shown against noise. In future we will compare
our algorithm with other superresolution algorithms available
in the literature for performance and computational complex-
ity. In addition, we will augment the algorithm to handle

{a}

Fig. 7. Results on Foreman sequence; (a) bicubic interpolation, and (b) our
superresolution result.

Fig. 8. Results on Calender sequence; (a) bicubic interpolation, and (b) our
superresolution result.

multiple local motions and occlusion.
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