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ABSTRACT

This paper examines a simultaneous estimation of both high resolu-
tion (high accuracy) 3D information and high-resolution image from
multiple low-resolution stereo-pair images. The proposed method is
based on the MAP (Maximum A Posteriori) framework and these
two relevant problems (estimation of both high-resolution 3D and
intensity images) are incorporated into a unified cost function. Then
the solution is obtained iteratively by a fixed point algorithm, which
yeilds 3D information while the high-resolution image is fixed, and
vice versa. Each solution can be obtained by solving a linear equa-
tion. It can be expected that the proposed method improves accu-
racy of both 3D information and high-resolution image simultane-
ously. Some experimental results are shown to validate the proposed
method.

Index Terms— Super-resolution, 3D reconstruction, MAP

1. INTRODUCTION
Recovery of 3D information using degenerate 2D images has been
one of the most important research topics in the area of computer
vision. Moreover, the camera-based 3D measurement has many ap-
plications in areas of computer graphics and industrial machine vi-
sion. A number of approaches for the 3D reconstruction problem
have been proposed in the past. One of the most famous methods
is stereo processing, which uses multiple images taken from differ-
ent view points to reconstruct 3D structure. In general, the problem
of 3D reconstruction using multiple images is reduced to the point
correspondence problem. Therefore, the algorithm for finding cor-
responding points in multiple images is the key issue for 3D recon-
struction and quality of the resulting 3D information largely depends
on the performance of the algorithm. At the same time, the resolu-
tion of input images is also a vital factor in accuracy of resulting 3D
information. The method called Super Resolution (SR) of images
aims to produce a high-resolution image from a set of low-resolution
images by recovering or inferring plausible high-frequency image
content. Many SR methods have been proposed in the past[1]. Typ-
ical approaches try to reconstruct a high-resolution image using the
sub-pixel displacements of several low-resolution images. As far as
far-field images are concerned, a single registration parameter to the
overall image can be assumed. In fact, many conventional SR meth-
ods as in [2] utilize this assumption, which dramatically reduces the
number of parameters to be estimated. This is not plausible, how-
ever, for near-field images since the displacement between corre-
sponding pixels depends on the distance between the camera and the
target point in 3D space. Therefore, 3D information is very impor-
tant for the SR problem. This fact clearly shows that the problems
of 3D reconstruction and image resolution enhancement are closely
related to each other, nonetheless, these two issues have been con-
sidered separately.

This paper proposes a simultaneous estimation method of both
high-resolution (accuracy) 3D information and high-resolution in-
tensity image from multiple low-resolution stereo-pair images. The
proposed method is based on the MAP (Maximum A Posteriori)
framework and these two relevant problems (3D information and in-
tensity image estimation) are incorporated into a unified cost func-
tion. Then we propose an iterative fixed point algorithm, which
yields 3D information while the high-resolution image is fixed, and
vice versa. Each solution can be obtained by solving a linear equa-
tion. It can be expected that the proposed method improves accuracy
of both 3D information and high-resolution image simultaneously.

Related works include many multi-frame image SR methods and
3D estimation from multiple images. In [2], MAP based image SR
method has been proposed. However the authors assume the use
of far-field images such as aerial imagery. Hence a single regis-
tration parameter is introduced and no 3D information is consid-
ered. Two relevant methods, which simultaneously estimate high-
resolution image and depth information, have been proposed. One
of them uses defocus cue[3] and the other one utilizes photometric
cue[4]. These methods yield accurate high-resolved image and depth
information, however, defocus cue requires multiple images of the
same scene taken with different focal lengths. To apply photomet-
ric cue to this problem, multiple images has to be taken under some
different illumination conditions. In [5], authors have proposed the
method of improving the depth estimation accuracy and image qual-
ity at the same time. However, they utilize simple averaging for im-
proving image quality, which results in marginal improvement. On
the other hand, we formulate and solve the problem using the MAP
framework, which is a very different idea from that of [5].

2. SIMULTANEOUS ESTIMATION
2.1. Problem statement

Here we use multiple stereo-pair images (sequence) taken by a cal-
ibrated stereo camera. It is also assumed that 3D geometry of cam-
eras is known. This is a feasible assumption since the algorithm is
targeted at robotic systems, in which the camera position is accu-
rately controlled. Optical flow can be combined with a rotary en-
coder to obtain pixel basis camera motion. In the following subsec-
tions, we consider the problem of estimating super-resolved image
and 3D depth from a sequence of stereo-pair images�i = [�L

i �
R
i ]

as shown in Fig.1.

2.2. MAP formulation

The problem here is to estimate super-resolved image �̂ and super-
resolved 3D depth �̂ from a sequence of low-resolution stereo im-
ages�i. This problem can be formulated as

�̂, �̂ = argmax
� ,�

P (�,�|�0,�1, · · · ,�N−1), (1)
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Fig. 1. An example of stereo camera location.

High Resolution

Image  X

Noise

kth Low Resolution

Image Ok

Down

Sampling
+Blur

Shift &

Rotation

n
k

Wk

Mh Nh×
Ml Nl×mby a factor ofmMl mNl×(                   )

Fig. 2. The model for low-resolution image generation.

where N represents the number of stereo-pair. The left image�L
0 of

the stereo-pair�0 is chosen to the reference frame, which is the base
of the super-resolved image �̂. Now the problem can be written as
the following minimization

�̂, �̂ = argmin
�,�

{
−
∑

i

log P (�L
i |�,�)

−
∑

i

log P (�R
i |�,�) − log P (�) − log P (�)

}
, (2)

where conditional independence among �i’s and independence be-
tween � and � are assumed. The likelihood P (�L

i |�,�) repre-
sents how likely the low-resolution left image of the i-th stereo-pair
is input for given super-resolved image� and 3D depth �. Let the
additive noise �k in Fig.2 be Gaussian, we then have

log P (�L
i |�,�) ∝

(
�

L
i −� (�,�i, �i, m)�

)T

×
(
�

L
i −� (�,�i, �i, m)�

)
, (3)

where � (·) is a matrix that operate rotation �i, shift �i, blurring,
and downsampling by a factor of m as shown in Fig.2. It should be
noted that the matrix � (·) contains 3D information � implicitly
and is abbreviated as �L

i . For the right image, P (�R
i |�,�) can

be written in exactly the same way as the left one. The third term
and fourth one in the right-hand side of Eq.(2) represent prior infor-
mation on the image and the 3D structure, respectively. We use the
smoothness constraint for this priori knowledge. Finally, the prob-
lem to be solved can be written as

�̂, �̂ = argmin
� ,�

{
N−1∑
i=0

(�L
i −�L

i �)T (�L
i −�L

i �)

+

N−1∑
i=0

(�R
i −�R

i �)T (�R
i −�R

i �)

+λX�
T
�̂X� + λZ�

T
�̂Z�

}
, (4)

where λX and λZ represent weight for image smoothness and weight
for depth smoothness, respectively. The matrices �̂X and �̂Z , which
impose the smoothness constraints, are composed of the laplacian
kernel. We also set a weight for each pixel according to its discon-
tinuity. This idea is known as the line-process and is introduced to
prevent from obtaining overly smooth result. To minimize Eq.(4),
we take an iterative fixed point algorithm, which gives 3D informa-
tion � while the high-resolution image � is fixed, and vice versa.
It is obvious that Eq.(4) is in a quadratic form with respect to � ,
and the solution is given by solving a linear equation accordingly. In
contrast, Eq.(4) is not in a quadratic form with respect to �, since
the matrices �L

i and �R
i contains 3D information � intricately.

In the following subsection, a linearization of Eq.(4) with respect to
� is examined.

2.3. Estimation of SR 3D information

This subsection describes the method for estimating super-resolved
3D depth for fixed �. The initial values for super-resolved image
and 3D depth are given by interpolation of the low-resolution input
images and stereo matching of the input stereo-pair, respectively. It
is worth noting that 3D depth� and disparity of the reference stereo-
pair 	 are connected through the equation d = Bf/Z, where f and
B represent the focal length and the baseline length, respectively.
. Thus estimating � is equivalent to estimating 	. The rest of the
paper considers disparity 	 of the reference stereo-pair �0 instead
of �. Now let the rotation matrix and shift vector be

�i =

[
ai
0 ai

1 ai
2

bi
0 bi

1 bi
2

ci
0 ci

1 ci
2

]
, �i =

[
ti
0

ti
1

ti
2

]
. (5)

(UL
i , V L

i ) represents a pixel coordinate on the left image that is a
rotated and shifted version of the reference SR image by�i and �i.
The coordinate (UL

i , V L
i ) can be written using the pixel coordinate

(U, V ) on the reference SR image and its disparity d (the subscript
is omitted for notational convenience) as

UL
i =

B(ai
0U + ai

1V + ai
2f) + ti

0d

B(ci
0U + ci

1V + ci
2f) + ti

2d
, (6)

V L
i =

B(bi
0U + bi

1V + bi
2f) + ti

1d

B(ci
0U + ci

1V + ci
2f) + ti

2d
. (7)

Here we concentrate on the error of i-th left image in Eq.(4). It can
be rewritten in a pixel basis as

�
L
i (u, v) −

∑
U

∑
V

�
L
i (UL

i , V L
i , u, v)�(U, V ), (8)

where �L
i (u, v) represents a pixel value of �L

i , which is a lexico-
graphical ordering vector of the image, at a location (u, v). �(U,V )
also denotes a pixel value of � at (U,V ). On the other hand,
�

L
i (UL

i , V L
i , u, v) represents a component of the matrix �L

i at
(UL

i + MhV L
i , u + Mlv), where UL

i + MhV L
i and u + Mlv de-

note column index and row index, respectively. We assume that the
blurring process is approximated by Gaussian kernel with known
variance σ2. Then we have

�
L
i (UL

i , V L
i , u, v) =

1

2πσ2
exp

{
− (um − UL

i )2 + (vm − V L
i )2

2σ2

}
, (9)

where m represents that the resolution of the SR image is m times
larger than that of input low-resolution image in each direction (Mh =
mMl, Nh = mNl). Let the current estimate of the disparity be
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d0 and Δd be the difference between the current estimate and the
true disparity d, that is d = d0 + Δd. First order Taylor series
expansion of �L

i (UL
i , V L

i , u, v) about d0 gives �(U, V, u, v) +
�(U, V, u, v)Δd, where

�(U,V, u, v) =
1

2πσ2
exp

{
− (um − ÛL

i )2 + (vm − V̂ L
i )2

2σ2

}
,

�(U, V, u, v) = �(U,V, u, v){2ρi
u(um − ÛL

i ) + 2ρi
v(vm − V̂ L

i )},
and

ÛL
i =

α

γ
, V̂ L

i =
β

γ
(10)

ρi
u =

ti
0γ − ti

2α

γ2
, ρi

v =
ti
1γ − ti

2β

γ2
(11)

α = B(ai
0U + ai

1V + ai
2f) + ti

0d0, (12)

β = B(bi
0U + bi

1V + bi
2f) + ti

1d0, (13)

γ = B(ci
0U + ci

1V + ci
2f) + ti

2d0. (14)

It should be noted that the indices of �(·, ·) and�(·, ·) are (U,V )

instead of using (ÛL
i , V̂ L

i ) for convenience of explanation. ÛL
i and

V̂ L
i can be obtained from U and V using Eq.(10). Finally we have

�
L
i (u, v) −

∑
U

∑
V

�
L
i (UL

i , V L
i , u, v)�(U,V )

≈ �L
i (u, v) −

∑
U

∑
V

�(U, V, u, v)�(U,V )

−
∑

U

∑
V

�(U, V, u, v)�(U,V )Δd. (15)

It is worth noting that Eq.(15) is linear with respect to Δd, which is
the variable to be obtained. The above approximation results in the
following square error function

‖�L
i −�� −��dΔ�‖2 = Δ�T

�
L
i Δ�− 2�L

i Δ�+ δ�L
i

2
,

where

�
L
i = �

T
d�

T
��d, �

L
i = δ�L

i

T
��d,

δ�L
i = �

L
i −��,

�d = diag{�(0, 0) · · · �(Mh − 1, Nh − 1)}.
� and � are matrices whoes components are �(U,V, u, v) and
�(U, V, u, v), respectively. For right images, similar approxima-
tion can be made. Finally, the minimization problem in Eq.(4) with
respect to the disparity � can be written as

�̂ = argmin
�

{
(�− �0)

T
�(�− �0)

−2�T (�− �0) + λZ�
T
	̂Z�

}
, (16)

where

� =

N−1∑
i=0

(�L
i +�R

i ), � =

N−1∑
i=0

(�L
i + �R

i ).

Therefore, setting the partial derivative of the above equation with
respect to � to zero yields optimal �̂ by

�̂
(n)

=
(
�+ λZ	̂Z

)−1
(
��̂

(n−1)
+ �

)
. (17)

2.4. Estimation of SR image

Here, we focus on the minimization of Eq.(4) with respect to the
super-resolved image� for a fixed disparity �. By fixing disparity
�, Eq.(4) becomes a quadratic form with respect to�. Therefore �̂
can be obtained by solving the following linear equation

�̂ =

(
N−1∑
i=0

(�L
i

T
�

L
i +�R

i

T
�

R
i ) + λX	̂X

)−1

×
(

N−1∑
i=0

(� L
i

T
�

L
i +�R

i

T
�

R
i )

)
. (18)

And then, the disparity �̂ is re-estimated using the method described
in the above subsection for the fixed �̂. These two processes are
alternately iterated until convergence and a super-resolved image and
a 3D depth are obtained.

2.5. Weight for smoothness constraint

How to set the weights λX and λZ in Eqs.(17) and (18) is an impor-
tant issue. We will focus our discussions on λX since the same idea
is applicable to λZ .

Since the noise in Fig.2 is assumed to be Gaussian, λX can be
considered as the ratio between mean square error of images Ei(�)

and smoothness constraint error Ex(�) = �T 	̂X�/(MhNh).
Therefore, we approximate the weight using the estimated super-
resolved image �̂ that is obtained in the previous iteration as λX =

Ei(�̂)/Ex(�̂). It seems that changing the weight according to the
mean square error at each iteration is plausible. At the first stage of
iteration, the estimated super-resolved image contains a large error
that results in a large weight to smoothness constraint (large λX ).
On the other hand, weight for the square error of images gets higher
(small λX) as the estimated super-resolved image �̂ gets closer to
the solution� .

3. EXPERIMENTS
The proposed algorithm was tested on 8 low-resolution stereo-pair
images (16 images in total) shown in Fig.3(a), which were gener-
ated by a computer graphics software. We carried out 4 times super-
resolution in each direction(m = 4). Figure 3(b) shows the cor-
rect high-resolution image. The reference input image is shown in
Fig.3(c). The result of cubic spline interpolation is given in Fig.3(d),
which clearly shows the lack of high frequency component. The
method in [2] was directly applied to the input images and the result
in Fig.3(e) was obtained. In this case, the assumption of a single
registration parameter is not valid and, thus, the result is not good
enough. We also used the disparity, which was obtained by the stereo
matching (Normalized Cross Correlation:NCC) for the interpolated
stereo-pair, instead of using a single registration parameter in [2]
(stereo+[2]). Subjectively better result has been obtained as shown
in Fig.3(f), however, some serious matching errors invoked large er-
rors in the super-resolved image. This result plainly indicates the
importance of the simultaneous estimation of super-resolved 3D in-
formation and intensity image. Figure 3(g) shows the result of the
proposed method. In contrast to other methods, the proposed method
gives sharp super-resolved image. In fact, the mean absolute error
between estimated super-resolved image and correct one for the pro-
posed method is the smallest as shown in Tab.1, which objectively
shows validity of the proposed method. Furthermore, as shown in
Figs.4(a)-(c), it can be confirmed that the proposed method estimate
accurate 3D information from multiple low-resolution stereo-pair
images. The result is far better than that of the stereo matching using
the two interpolated stereo-pair images as shown in Fig.4(c).
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(a)

(b) (c)

(d) (e)

(f) (g)

Fig. 3. Simulated results. (a)The input low-resolution stereo-pair
images. (b)True high-resolution image. (c)The reference low-
resolution image. (d)Interpolated by cubic spline. (e)The result of
[2]. (f)Stereo+[2]. (g)Proposed method.

Table 1. Mean absolute error between the estimated super-resolved
image and the ground truth.

Interpolation MAP Stereo+MAP Proposed
MAE 5.7 4.9 5.4 2.9

Here we show the result on real images. We fixed a stereo cam-
era on an XY-stage and moved it 2cm at a time in each direction.
The input stereo-pair images shown in Fig.5(a) were taken from 8
different positions in the same way as the simulation. The target ob-
ject is a plane with texture(some Chinese characters on check). Four
times super-resolution (m = 4) was carried out in this experiment.
Figures 5(b) and (c) show the results. Figure 5(b) is the result of
interpolation using cubic spline. The result of the proposed method
is illustrated in Fig.5(c). One can see that the proposed method has
yielded far better result compared to that of the interpolation. From
Fig.6, it is also confirmed that the smooth plane has been obtained
by the proposed method.

4. CONCLUSION
In this paper we have proposed a simultaneous estimation method
of both high-resolution (highly accurate) 3D information and high-
resolution image from multiple stereo-pair images. The proposed
method is based on the MAP (Maximum A Posteriori) framework
and these two relevant problems (high accuracy 3D information and
high-resolved image estimation) are incorporated into a unified cost
function. Then the solution is obtained iteratively by a fixed point al-

Fig. 4. Estimated 3D information. (a)True 3D information.
(b)Proposed method. (c)Stereo matching(NCC).

(a)

(b) (c)

Fig. 5. The result on real input images. (a)The input low-resolution
stereo-pair images. (b)The result of cubic spline interpolation.
(c)The result of the proposed method.

Fig. 6. Estimated 3D information for the real image.

gorithm, which gives 3D information while the high-resolution im-
age is fixed, and vice versa. Validity of the proposed method has
been confirmed through some experimental results using both com-
puter generated and real images.
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