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ABSTRACT

The accuracy of computer vision systems is highly dependent on the
correct estimates of the camera intrinsic parameters. This accuracy is
important in numerous applications like telepresence and robot navi-
gation. In this work, a novel technique is proposed to model the vari-
ation of the camera’s intrinsic parameters as a function of the focus
and the zoom. The proposed method computes the complete surfaces
of the intrinsic parameters from a predefined number of focus/zoom
measurements using a moving least-squares (MLS) regression tech-
nique. Then, it approximates the generated MLS surfaces by em-
ploying adaptive Delaunay meshes. Compared to a previous tech-
nique using bivariate polynomial functions, the new method results
in a 94% enhancement of the mean estimation error. In addition, the
new method leads to the same accuracy of the results as compared
to a previous version of the MLS technique while requiring a less
amount of computations.

Index Terms— Machine vision, lenses, modeling, optical dis-
tortion

1. INTRODUCTION

The usage of automatic motorized zoom lenses in camera systems
has become significantly important in the field of computer vision.
This is due to their flexibility and controllability, as compared to
mono-focal lenses. By varying the focal length and the aperture val-
ues, a zoom camera system can be adjusted to different fields of
view, depth of fields and lighting conditions. This flexibility is the
main reason why zoom lenses are increasingly being adopted in ap-
plications like 3D scene depth reconstruction, visual tracking, telep-
resence and robot navigation [1–3].

The challenge of the employment of zoom lens camera systems
lies in modeling the process of image formation as the lens para-
meters focus, zoom and aperture are varied in a continuous manner.
This image-formation process describes the relationship between an
existing point Pw = (xw, yw, zw)T in the real world coordinate
system R

3 and its corresponding image point Pi = (ui, vi)
T in the

image coordinate system R
2. Due to the imperfectness of a camera

lens system, errors are introduced. These error are known as the ra-
dial and tangential distortion [4, 5]. To attain the flexibility required
in computer vision applications, a zoom lens camera system has to
be calibrated at a number of lens settings and the values are then
saved in a look-up table. Nevertheless, this process is difficult to
accomplish due to the numerous measurements that have to be done.
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One way to deal with this limitation by using auto-calibration
algorithms. These methods are either based on finding the image of
the absolute conic, which is used to compute a transformation from
the projective frame to the (calibrated) metric frame, or on solving
the Kruppa equations which represent an algebraic representation
of the correspondence of the epipolar lines tangent to the absolute
conic [2]. However, these techniques are not very reliable since they
are highly susceptible to errors. This is due to the inaccuracy in the
obtained results especially the ones involved in finding the absolute
conic in the projective form [2]. Another problem is the fact the a
lot of constraints have to be imposed on the camera system which
makes its application in scenarios like telepresence limited.

Another way is to treat the zoom lens camera system as an in-
put/output function. The inputs in this case are the focus and the
zoom while the outputs are the camera’s intrinsic parameters. The
main advantage over the auto-calibration techniques is the fact that
there is no constraints imposed on the used camera system. Such an
analysis has previously been conducted by [6] using bivariate poly-
nomial functions; however, the results are not satisfactory due to
the introduced errors. Recently, a new algorithm based on the MLS
technique has been proposed in [7]. This algorithm operates by gen-
erating a local function at each focus/zoom setting point and leads to
accurate results. The drawback of this method is its excessive com-
putation if it has to be used in an application that requires low delay
response, e.g. telepresence, when compared to [6].

In this work, a new technique based on the moving least-squares
(MLS) method of [7] is implemented to model the intrinsic parame-
ters of a zoom lens camera system. MLS is used to generate the sur-
faces of the camera’s intrinsic parameters as a function of focus and
zoom. Then, an adaptive Delaunay mesh is applied to approximate
these surfaces. The obtained meshes can then be stored and used
to estimate the intrinsic parameters in any application that requires
a variable focal length. As will be seen in the results, the proposed
method retains the accuracy of MLS while keeping the amount of
computation low.

Section 2 defines the assumptions made in this work. Section 3
illustrates a review of some standard techniques of modeling the
camera intrinsic parameters. Section 4 presents the proposed tech-
nique. Section 5 shows an analysis and comparison of the proposed
method with previous techniques. Finally, conclusions are drawn in
Section 6.

2. ASSUMPTIONS MADE

What is studied in this type of analysis is the function that describes
the relation between the focus and the zoom settings of a zoom lens
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camera and the corresponding variation of the intrinsic and the dis-
tortion parameters. The intrinsic parameters are expressed by the
focal length, the coordinates of the camera center point and the skew
parameter while the distortion terms are described by the coefficients
of their Taylor series expansion [2, 6, 8]. To facilitate the modeling
operation, some assumptions have to be made.

• Aperture Setting: In the current camera’s technology, the
aperture setting is supposed to have a negligible influence on
the intrinsic parameters [8]. Therefore, the lens parameter
aperture is not considered in this analysis.

• Skew Parameter: In modern camera systems, the pixel an-
gle can always be expected to be 90◦ [2]. Thus, the skew
parameter can be safely neglected.

• Lens Distortion Coefficients: The imperfectness of lens sys-
tems compared to a pinhole camera model leads to non-linear
distortion. In [4], an expression that corrects the distortion of
mono-focal lens systems was proposed as:

ui = ud + ū
`
κ1r

2 + κ2r
4 + κ3r

6 + · · ·´
+

ˆ
τ1

`
r2 + 2x̄2

´
+ 2τ2x̄ȳ

˜ `
1 + τ3r

2 + · · ·´ , (1)

vi = vd + v̄
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6 + · · ·´
+

ˆ
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where ū = ud − u0,

v̄ = vd − v0, (2)

r =
p

ū2 + v̄2.

ud and vd represent the measured (lens distorted) pixel co-
ordinates; ui and vi are the corrected (ideal) pixel coordi-
nates of the world point Pw; u0 and v0 describe the loca-
tion of the principal point P0; r is the radial distance between
Pd = (ud, vd)T and P0 = (u0, v0)

T ; κ1, κ2, ... are the
coefficients of the radial distortion and τ1, τ2, ... are the coef-
ficients of the tangential distortion.

The radial distortion is mostly dominated by the leading term
of the power series expansion κ1r

2, whereas higher order
terms κ2r

4, κ3r
6, ... are barely significant in today’s com-

mercial lenses. It can also be shown that the higher order
terms r4, r6, ... result in a numerical instability in (1) [8]. Fur-
thermore, the insignificance of the tangential distortion com-
ponent in today’s lens systems is mentioned in [4]. Hence,
only the first radial distortion coefficient κ is considered.

3. EXISTING TECHNIQUES

Several techniques are available in the literature which address the
problem of modeling the camera’s intrinsic parameters. The simplest
method is to measure the intrinsic parameters using a standard offline
calibration technique and then store the data in a look-up table [9].
Unfortunately, this leads to a waste in the memory resources. This is
justified since for a single focus/zoom setting it is necessary to store
at least 7 values: the focus, the zoom, the focal length in u- and v-
direction of the pixel axes, the two coordinates of the principal point
and one radial lens distortion coefficient. By taking the motorized
zoom lens system used in this work, it is possible to choose between
700 different settings for the zoom and 600 different settings for the
focus. This results in 700×600×7 = 2.940.000 values that have to
be stored.

In [6], the intrinsic parameters are computed by finding a bi-
variate polynomial function, empirically estimated, that fits the data
points by the minimization of an error function. The advantage of
this method is its very efficient memory consumption since only the
coefficients of the polynomial functions need to be stored, instead
of requiring every single value of the intrinsic parameters for each
lens setting. The general equation that defines a bivariate polyno-
mial function of degree m is given by:

f(s, o) =
mX

i=0

m−iX
j=0

aijs
ioj , (3)

where s, o represent a focus and a zoom setting and k reflects the
number of coefficients defined as

k =
(m + 1) (m + 2)

2
. (4)

To approximate the intrinsic parameters of a zoom lens camera sys-
tem in [6], a bivariate polynomial function of degree m = 2 was
chosen for the coefficient of the radial distortion κ. The components
of the focal length (fu, fv) and the coordinates of the principal point
(u0, v0) were approximated with a function of degree m = 5.

4. THE PROPOSED TECHNIQUE

Given is a set of measured focus/zoom inputs and the corresponding
intrinsic parameters at these points. Let xi = {si, oi}i∈I be the set
of these distinct data points in R

3, and let {f(xi)}i∈I be the intrinsic
parameter values at these points, i.e. f(si, oi) = zi. The moving
least-squares approximation of degree m at x ∈ R

3, as described
in [7], is the value p̃(x) where p̃ ∈ Π3

m minimizes, among all p ∈
Π3

m, the weighted least-squares error function defined by

X
i∈I

θ (di) [p(xi)− f(xi)]
2 . (5)

θ is a non-negative weight function for each neighboring point xi

of x, d =
‚‚x− xi

‚‚ is the corresponding Euclidean distance in R
3

and p ∈ Π3
m is the space of polynomials of degree m in R

3. The
approximation of the data introduced by (5) is defined to be local,
if the weight function θ(di) is rapidly decreasing as di → ∞, or
is of finite support. Similarly, (5) is defined to be interpolable if
limdi→∞ θ(di) = 0 [10]. A weighting function that satisfies these
conditions is

θ(di) = exp

„−di
2

h2

«
, (6)

where h is a prescribed real constant.

The MLS approach is an appropriate technique to the problem
of modeling the intrinsic parameters since it uses a local regression
scheme. At each point setting x, i.e. at each combination of focus
and zoom, it only uses data values within a sphere of radius h around
x. In addition, the weighting function in (6) forces the weights of the
points that are outside of this sphere to vanish. Thus, it is possible to
compute a regression surface by only using the set of points within
a distance around x less than h.

MLS results in a good approximation of the intrinsic parameters
since the obtained model of a specific intrinsic parameter is the con-
catenation of several local models. For more information about the
MLS zoom lens camera modeling technique, refer to [7].

The main drawback of the MLS method is its requirement of a
large amount of computations. To estimate the intrinsic parameters
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at each focus/zoom setting point x, the k nearest neighbors have to
be determined to calculate the Euclidean distances. Then, the com-
puted distances are weighted using (6), followed by a minimization
of (5). These extra computations introduce a noticeable delay which
cannot be tolerated if MLS is used in an application where the delay
is critical, e.g. in telepresence [3].

To overcome this deficiency, the MLS generated surfaces will be
approximated with a Delaunay triangulation. The motivation behind
this idea is that MLS has the ability to interpolate new points from
the measured focus/zoom settings. Therefore, if the number of gen-
erated points is large enough, i.e. the sampling rate is high, a mesh
approximation can be performed without a significant loss in the ac-
curacy [11]. To compensate for the discrete type of the generated
surfaces, one can take advantage of the constructed meshes to com-
pute the intrinsic parameters at the focus/zoom setting points which
are not generated with MLS.

To estimate the intrinsic values in such cases, one has to search
for the triangle that encloses a focus/zoom setting x and use the ver-
tices of the triangle to interpolate the new value. Suppose that vi,
where i = 1 . . . 3, are the vertices of the triangle T that encloses x.
The intrinsic value ẑ of x is computed as the weighted sum of the
intrinsic values of vi

ẑ =
3X

i=1

ωi · z (vi) , (7)

where z (vi) is the intrinsic value of the vertex vi and ωi is the
weight assigned to vi. The weights ωi in this case are computed by
determining the barycentric coordinates of x in T [11].

The proposed scheme used to estimate the intrinsic parameters’
surfaces from a small set of measured focus/zoom setting points is
shown in Table 1. The offline version is used to generate the sur-
faces of the intrinsic parameters, i.e. to interpolate new points. The
online version is the one to be employed in applications that require
a camera with a variable focal length.

Table 1. The Proposed Algorithm

For every focus/zoom setting x:

Offline:
1- Calculate the Euclidean distances between a chosen

setting x and all measured data points xi.
2- Determine at least k nearest neighbors of x where k is

obtained using Equation (4).
3- Weight the selected points with Equation (6).
4- Calculate the MLS regression surfaces with these

weighted points by minimizing Equation (5).
5- Approximate the obtained surfaces using Delaunay

triangulation and save the meshes.

Online:
1- Search for the position of the setting x in the mesh.
2- If x exists, fetch the intrinsic parameters from the MLS

surfaces.
Else, locate the triangle T that encloses x and estimate
the intrinsic parameters using Equation (7).

5. EXPERIMENTAL RESULTS

The lens camera system used in the experiments is a PROSILICA
(EC 1280C) CCD camera with a motorized PENTAX zoom lens

(C6Z1218M3). The pixel size, as specified in the manual, is 6.7
μm in both directions of the pixel. The skew, defined as the angle of
the pixel axes, has been estimated to 90◦ ± 0.01. Thus, for an angle
close to 90◦, the skew factor is set to 0. As discussed in Section 2,
the aperture setting is set to a constant value of F = 5.6. The lens
system’s zoom range is between 12.5 mm - 75 mm and that of the
focus between∞ - 1.2m respectively.

In this work, the zoom setting in motor units was varied between
0 − 700 in steps of 100. This is equivalent to a change in focal
length between 12.5 mm - 65 mm. For the focus, a range of 150
- 600 motor units with a step size of 50 was used, which roughly
corresponds to the focused distance of the lens system. To avoid
a hysteresis problem due to backlash, as mentioned in [6], the lens
motor was driven to the desired setting by starting with a smaller
value for both, focus and zoom.

The measured set of data points, consisting of a total of 80 fo-
cus/zoom settings, is used to generate the models. For each lens
setting, 40 images of a calibration grid with 64 points for calibration
on it were taken from different fields of view. Due to the wide range
of focal length, 6 checkerboards, different in size, were used for the
calibration procedure. The calibration is done separately for each
focus/zoom setting by treating each one as a single mono-focal lens.
To determine the intrinsic lens parameters, the Camera Calibration
Toolbox for MATLAB was used [12]. The computed parameters are
then considered to as the ground truth data of the modeling process.

As a measure of the estimated model’s accuracy, the Undistorted
Image Plane Error (UIPE) defined in [6] is used to represent the re-
projection error. The UIPE is given as

UIPE =
p

(ud − ui)2 + (vd − vi)2, (8)

where (ud, ud) are the measured coordinates of the given world
point Pw mapped to the image point Pd; (ui, vi) are the estimated
coordinates of an image point Pi, determined by the camera’s in-
trinsic parameter model. A value UIPE = 0 means that the camera
model has totally corrected the reprojection error.

To make the proposed measure invariant to the number of the
data points, it is also suggested to use the Mean UIPE (M UIPE)

M UIPE =
1

n

nX
i,d=1

UIPE, (9)

where n is the number of calibration points in all calibration grids
for one single focus/zoom setting.

In these tests, the proposed algorithm is compared to the MLS
method in [7] and the bivariate polynomial approach with the global
regression scheme in [6].

These techniques are applied to the measured ground truth data
to determine the intrinsic parameter models. The performance of
the algorithms is measured by computing the M UIPE, as in (9).
The obtained results are illustrated in Fig. 1. As can directly be
noticed, the proposed method is able to model the variation of the
intrinsic parameters in a very good manner. The error in the pixels’
reprojection error is of the same order as compared to the look-up
table (ground truth) and the MLS technique in [7].

The values represented by these plots are better reflected in Ta-
ble 2, where the MM UIPE is the mean of M UIPE over all ground
truth points, MAX UIPE and STD UIPE are the maximum and the
standard deviation of the UIPE. The RMSE value represents the Root
Mean Squared Error of the reprojection defined as

RMSE =

vuut 1

l × n

l×nX
i,d=1

(ud − ui)2 + (vd − vi)2, (10)
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where l is the total number of focus/zoom settings.
Comparing the proposed technique to Willson’s method, i.e. [6],

it can be seen that the pixel RMSE has decreased tremendously. The
RMSE decreased from 23.31 to only 0.14 which gives an improve-
ment of 94%.

The main reason for this result is that the proposed technique has
a better ability of modeling the surfaces as previously mentioned due
to the employment of MLS. This can be seen by looking at Figures 2
and 3a which present the generated models of the coordinate of the
camera center u0. Due to the scattered nature of the camera center,
the global regression scheme cannot compute a good model of the
intrinsic parameter. This can be also checked by the results in [6, 7].

The proposed method leads to the same accuracy as the origi-
nal MLS method in [7] as shown in Table 2. Nevertheless, it can
be noticed from Fig. 2 that the interpolated surface of the proposed
technique is not as smooth as the original method due to the mesh ap-
proximation. However, by increasing the sampling rate at which the
MLS curves are estimated, it is possible to attain smoother surfaces
at the cost of storing larger meshes.

Finally, the hold-out cross validation test is applied to the three
techniques by taking the RMSE defined in (10) as a criterion while
varying the number of samples from 10 to 79. The results illustrated
in Figure 3b clearly show that the mesh approximation do not deteri-
orate the accuracy of the MLS interpolation. Compared to Willson’s
technique, the improvement is easily noticed.

Table 2. Comparison of the reprojection error of the different in-
trinsic zoom lens parameter modeling techniques.

RMSE MM UIPE MAX UIPE STD UIPE

LOOK-UP TABLE 0.14 0.08 7.91 0.12

MLS 0.14 0.08 7.91 0.12

MLS-DELAUNAY 0.14 0.08 7.91 0.12

WILLSON 23.31 19.4 75.03 14.00

6. CONCLUSION

A new technique is proposed based on MLS, to model the variation
of the camera’s internal parameters as a function of the focus and
the zoom. Compared to the previous version of MLS, the proposed
approach is able to retain the accuracy of the intrinsic parameters’
estimates of a zoom lens camera while minimizing the amount of
computations. This is achieved since the proposed method approx-
imates the MLS generated surfaces with a Delaunay mesh which
makes the estimation of the intrinsic parameters simple.

(a) Ground Truth. (b) Willson.

(c) MLS. (d) MLS-Delaunay.

Fig. 1. Plot of the M UIPE of the different techniques. In (a), the
ground truth data. In (b), the method of [6]. In (c), the original MLS
method of [7]. In (d), the proposed method.

(a) MLS. (b) MLS-Delaunay.

Fig. 2. Plot of the model for the coordinate of the camera center
u0 obtained from the original MLS method of [7] in (a) and the
proposed method in (b) along with the measured settings.

(a) Willson. (b) Cross Validation.

Fig. 3. (a): Plot of the model for the coordinate of the camera
center u0 obtained from the method of [6] along with the measured
settings. (b): Cross validation test of all the methods. At each lens
setting, the test is repeated 100 times and the average is plotted.
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