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ABSTRACT 

 

In this paper, we present a novel approach for image-to-map 

registration through graph matching. In our graph-based 

matching approach road networks are presented as graphs, 

and registration is performed through the optimal mapping 

between two such graphs. A global compatibility function is 

formulated to measure the overall goodness of 

correspondence between two graphs, and is optimized 

through the use of continuous relaxation labeling. The main 

advantages of our approach lie on its invariance to 

translation, rotation and scale differences (through the use of 

appropriate attributes), as well as on its use of network 

structure to reduce the ambiguity in search space for inexact 

matching. Furthermore, our approach requires no user-

defined threshold to justify local matches. In this paper we 

present the theoretical background behind our approach, and 

experimental results to demonstrate its performance. 

 

Index Terms— Graph Matching, Imagery, GIS, Feature 

 

1. INTRODUCTION 

 

Recent advances in commercial satellites and space-/air-

borne sensors result in the availability of substantial 

amounts of high-resolution imagery. The georegistration of 

this imagery, i.e. identifying its location and orientation in 

space, is a fundamental operation for its subsequent 

exploitation in a variety of geospatial applications. 

Georegistration typically involves the identification of the 

same entities (e.g. points or lines) in the image as in a 

geospatial database (e.g. a map) depicting the same area.  

Point-based georegistration has long been the most 

popular approach, primarily because point features (e.g. 

manhole covers [1], building corners [2]) are relatively easy 

to detect. However, points contain minimal semantic 

information, and as such point matching tends to be an 

error-prone process. Thus, there have been efforts to use 

more complex features for matching. For example, 
Schickler [3] used 3D wireframe building models for 
georegistration, an approach though that required very good 
approximations of the orientation parameters. [4], [5], and [6] 
used polygon features representing land-use classes to 

reconstruct the absolute orientation of aerial imagery. Road 

networks contain inherently substantial semantic 

information in their structure (e.g. their topology and 
geometry), and thus are considered robust matching entities.  

This work uses point networks (such as roads and road 

networks) as matching primitives and is based on the 

relaxation labeling introduced by Hummel and Zucker [7]. 

The challenges we are facing include the computational 

complexity of matching network components (i.e. junctions 

and polygons), as well as errors in feature extraction due to 

the presence of noise in scenes, like building-induced 

shadows and occlusions. Although we have substantial 

efforts in the computer vision community addressing image 

registration as a graph matching problem ([8]; [9]; [10]), the 

geometry and topology of the network have not received 

enough attention. In this paper, the utilization of point 
networks and revised relaxation labeling provides the ability 
to utilize not only point information, which is relatively 
easy to detect, but also additional structures and attributes 
derived from the network to improve the matching 
algorithm and thus achieve relatively efficient computation. 
The process is fully automatic in terms of no input needed 
from users. These unique advantages serve both as the 
motivation for our work and constitute the main 
contributions of this paper. 

 The remainder of the paper is organized as follows: 

Section 2 introduces the formal abstraction of road networks 

by using attributed graphs. The attributes that are 

constructed for relaxation matching are described in Section 

3. In Section 4, our revised relaxation labeling algorithm for 

matching is described in detail. Experimental results are 

presented in Section 5. Finally, Section 6 presents some 

conclusion and outlines future work. 
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2. GRAPH REPRESENTATION 

 

Road networks can be represented as graphs, with road 

intersections as graph vertices. Intersection detection is not a 

topic addressed by this paper, as this is a well-researched 

topic in photogrammetry and computer vision. We assume 

that road intersections have been detected in both the image 

to be registered, and the corresponding geospatial database 

(i.e. a corresponding map, or even another georegistered 

image), and represent networks as attributed graphs. In an 

attributed graph a set of attributes is used to express 

relationships among its vertices (e.g. links between them) 

and properties of such relationships (e.g. distance or 

orientation, or even curvature of the segments linking two 

nodes).  

The image space network can be represented as Gd = 

(Vd, Rd, Ad). In this notation, Vd = {V1

d

, V2

d

,… Vr

d

} is the 

set of r vertices of road intersections; Rd = {Dij
d
 | (i,j)  Vd

2

} 

is a set of relative distance relations, linking vertex pairs 

defined over Vd

2

= Vd  Vd. The other attribute is tabulated 

in the adjacency matrix Ad, also defined over Vd

2

= Vd  Vd, 

with entries of 1 (or 0) when a connection exists (resp. does 

not exist) between the two corresponding two nodes. 

Otherwise, when two nodes are not linked, the 

corresponding adjacency matrix entries are 0s. More formal 

definitions of those attributes are provided in the next 

section.  

Thus, the road network is defined in this manner 

through a sequence of vertices, and attributes among these 

nodes: adjacency, distance, etc. The reader can easily 

understand that additional attributes may also be used as 

needed. Similarly, the corresponding object space network 

can also be defined as Gm = (Vm, Rm, Am). Using the above 

notations for these two networks, our aim in matching is to 

optimally correspond (label) nodes Vd = {V1

d

, V2

d

,…, Vr

d

} 

in graph Gd to those from the set Vm = {V1

m

, V2

m

,…, Vs

m

} in 

graph Gm satisfying certain matching criteria. 

 

3. PROPERTY FORMALIZATION 

 

With above representation, road networks from image and 

object space can be represented with graph structures 

associated with attributes. In this section, we will further 

give formal definitions of such attributes. 

We start with adjacency, which allows the graph to 

model the topological structure of road networks. 

 

Definition 1. If there exists one road segment that directly 

connects road intersections i and j, i is considered to be 

adjacent to j and this property is represented as an edge 

between corresponding graph vertices Vi and Vj. The entry 

for ij in the adjacency matrix A is of value 1. Otherwise, it is 

0, i.e.:  

 
=

otherwise

VtoadjacentisVif
A

d

j

d

id

ij

0

1   (1) 

By definition adjacency is invariant with respect to 

translation, rotation, and even scale variations between the 

image and the corresponding geospatial dataset. Euclidean 

distance on the other hand is invariant to translations and 

rotations, but not to scale changes. In order to overcome this 

problem we use the relative distance as a node-linking 

attribute (instead of Euclidean distance). Relative distance is 

defined as:  

 
2/)(

ˆ

itij

ij

ij
DD

D
D

+
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where Dij is the Euclidean distance between vertices Vi and 

Vj, Vj and Vt are two vertices adjacent to current vertex Vi, 

that is Aij=1 and Ait=1. As vertices in the graphs denote road 

intersections, every vertex will have at least two adjacent 

vertices. In the case of more than two adjacent to current 

vertex Vi, Vj and Vt in the relative distance are selected 

randomly from all vertices adjacent to Vi. 

A third attribute (loop attribute) can also be formed 

related to vertices. It is used to model higher network 

topological structures, and specifically the formation of 

closed loops in it. In the case of road networks the closed 

loops are predominantly of quadrangular form, and 

accordingly this property is defined as:  

 

Definition 2. If vertex Vi has two adjacent vertices, each of 

which also has one common adjacent vertex other than Vi, 

Vi has one quadrangle associated to it. 

 

As mentioned above, the property can easily be extended to 

more complex, polygonal loops, if so desired.  

 

4. OPTIMAL MAPPING ESTIMATION 

 

Network matching becomes a matching of attributed graphs, 

and we proceed using a relaxation labeling approach. Our 

aim is to iteratively re-label the nodes of the data graph with 

the model graph so as to optimize a global compatibility 

measured by the structures and attributes of matched nodes. 

Given Vk

m

 from Gm as the current label of Vi

d

 in Gd, let 

{s, } be any two adjacent vertices of Vi

d

 and {t, } be any 

two adjacent vertices of Vk

m

. The goodness of the local fit 

can be measured with relative distance; if the two adjacent 

vertices of current node have a common adjacent node 

(represented by j and  separately in two graphs) other than 

the current node, a second relative distance is then applied: 
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Use Figure 1 as an example. If we consider labeling V2

m

 for 

V1

d

, V1

d

 has two adjacent vertices V2

d

 and V3

d

 both 

connecting with vertex V4

d

. At the same time, V2

m also has 

two adjacent vertices V1

m

 and V5

m

 that connect with vertex 

V4

m

.  In this case, H should be measured with the second 

form. If Vk

m

 has more than two adjacent vertices as V1

m

, we 

choose the two vertices that minimize the power value in 

function H.  

 
V1

d
 

V2

d
 

V3

d
 

V4

d
 

V1

m
 

V2

m
 

V3

m
 

V4

m
 

V5

m
 

 
Figure 1. Vertices with inexact degrees 

 

The novel feature of this local consistency measure H is 

its compound exponential structure, which distinguishes it 

from many alternatives in the literature. The underlying 

advantages with these two measurements is that the 

constructed H function will not be affected by the presence 

of noise (i.e. the additional link V3

m

 in Figure 1) and the 

ambiguity will be reduced as low as possible. Similarly, the 

presence of noise (i.e. additional links) in V
d
 would not 

affect our matching. 

With function H, the local difference between Vk

m

 and 

Vi

d

 under the minimal relative distance constraint is mapped 

into a similarity measure for assigning Vk

m

 to Vi

d

. As the 

continuous relaxation labeling framework, weighted values 

other than logical assertions (1 or 0) are attached to all 

possible assignments for each vertex in Gd. The weight with 

which label V
m

is assigned to vertex Vi

d
 is denoted by pi( ) 

and satisfies: 

 1)(0 ip ,  for md VVi ,     (4) 

and 

 1)(

1

=

=

m
q

m

V

V

ip ,  for dVi    (5) 

Let be all available assignments with Vm to Vd. The global 

compatibility function can be formed as:  
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Thus, the optimal labeling of Gd with Gm will be the one 

( *) that maximizes the above function:  

 

 )max(*)( =     (7) 

We use the gradient ascent algorithm, which iteratively 

computes the length and direction of the update vector to 

update p such that the global compatibility function  will 

increase with each updating of p. The iteration terminates 

when the algorithm converges, generally producing an 

unambiguous labeling (or matching). Interested readers are 

referred to [7] for additional details. 

 

5. EXPERIMENTAL RESULTS 

 

We implemented our graph matching approach in Matlab. In 

order to demonstrate the performance of proposed approach, 

we apply the relaxation algorithm to find the 

correspondences in road networks from a satellite image and 

a map. The two detected road networks used in this 

experiment are marked by M and M  below (Figure 2), 

where M represents the attributed graph built from the road 

network in the map; M  represents the attributed graph built 

from the road network from the satellite image and was 

created by subjecting M to arbitrary rotation, translation and 

scale changes. Thus, the two networks reflect typical 

registration conditions, whereby an image and a 

corresponding map may differ substantially in terms of these 

conditions. It should also be noted that we have introduced 

in the map network a link (between nodes a and e) that does 

not exist in the image network. The reason for this is 

explained in the following paragraphs. 

 

 

 
(a) 

 
  

(b) (c) 

a 

v3 

v4 

v6 
b 

c 

d 
e 

f 

v1 

v2 

v5 

 
Figure 2. Experiment data: (a) road network in the map; (b) 

attributed graph M abstracted from the map; (c) attributed 

graph M
’
 from the synthetic satellite image. 

 

To comprehensively test the performance of our 

approach, we do the following two experiments:  

1) Exact matching by assuming the link between vertex 

a and e does not exist in the map (or by adding a similar link 

between V6 and V4). Thus, the two graphs have the same 

structure. In Figure 3, the top line (linking circles) shows 

graph matching results using all three attributes, while the 

bottom curve (linking crosses) shows matching results using 

only two attributes: relative distance and adjacency 

(ignoring the loop attribute). It is easily seen that global 

compatibility increases faster when all three attributes are 
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considered, especially after tenth iteration. The run time is 

0.9113 (two attributes) and 1.3219 (all three attributes). 

 

 
 

Figure 3. Comparison under exact matching 

 

2) Inexact matching whereby the link between vertex a 

and e is allowed to participate in the map network, without 

having a corresponding link in the image network. Thus the 

two networks differ partially in terms of their structure. 

Matching results are shown in Figure 4. The result using all 

three attributes is shown by the thinner curve (top) and its 

global compatibility increases faster and converges earlier 

than when using two attributes only. The run time for this 

experiment is 1.2218 seconds (with two attributes) and 

1.4821 seconds (with all three attributes).  

 

  

Figure 4: Comparison under inexact matching 
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 a b c d e f 

v1 0 1 0 0 0 0 

v2 0 0 1 0 0 0 

v3 0 0 0 0 0 1 

v4 0 0 0 0 1 0 

v5 0 0 0 1 0 0 

v6 1 0 0 0 0 0 

model 

data 

 
Figure 5. Road network matching result 

 

The matching result is visualized in Figure 5, where the 

correspondences between nodes as a result of the network 

matching are shown by arrows. It can be easily seen that all 

nodes were matched correctly despite differences in 

orientation (rotation, shift, and scales) between the two 

networks, or even differences in their actual structure (the 

presence of the a-e link). The results in Figs. 3 and 4 also 

demonstrate the importance of the addition 

 

6. CONCLUSION AND FUTURE WORK 

 

This paper introduced a novel matching approach to the 

georegistration problem, which offers the ability to utilize 

information about the topology and geometry of a network 

in order to establish correspondence. The ability to utilize 

both allows us to reduce the ambiguity of local consistency, 

especially when inexact matching takes place. Furthermore, 

the approach does not require user input, other than 

detecting road intersections through image processing. Thus 

our approach offers a robust and general solution to the 

image-to-x registration problem.  
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