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ABSTRACT

In this paper we propose a new blind, error-free detection al-

gorithm for watermarking in transform domains. The detec-

tion scheme uses linear decoding techniques from the recent

theory of Compressive Sensing (CS), whose central idea is

that a small number of non-adaptive linear projections of a

sparse signal are sufficient for error-free reconstruction of the

original signal. We use the fact that natural images are ap-

proximately sparse in the DCT or wavelet basis; with an extra

step of sparsification or scaling of the coefficients we can de-

code both the original image and watermark with zero error,

despite not knowing the host image. Besides being error-free,

our proposed detection algorithm has low complexity com-

pared to other blind algorithms. It can be extended to any

transform-domain watermarking method, and also be used to

watermark already compressed images.

Index Terms— Blind Watermark Detection, �1-decoding,

Image compression, Transform Domain Watermarks, Com-

pressive Sensing

1. INTRODUCTION

Efficient and accurate digital watermarking of multimedia is

more critical than ever in the Internet age. In watermarking

schemes we embed a signature “watermark” in an image or

audio file in order to represent and protect ownership. We

require a watermark to be imperceptible yet robust against at-

tacks from media pirates who may attempt to remove them.

In order to verify ownership we design detectors that can con-

fidently establish the presence of a specific watermark. There

is a tradeoff in choosing a simple low-complexity watermark

embedding / detection algorithm: making it too simple will

also make it susceptible to detection by a third party. Besides

copyright protection, watermarking can also be used for con-

tent verification, so as to prevent the propagation of illegal

media.

We often use specific watermarking schemes to cater to

application-specific requirements. But one overarching theme

in all applications is accurate detection of the watermark.

Here we present a detection scheme that not only detects the
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presence of the watermark with 100% accuracy (under spec-

ified conditions), but does so with zero error in estimating it.

Therefore proof of ownership is rightfully established with

no room for false positive speculation that a competitor wa-

termark may have been erroneously detected.

The central idea of our scheme stems from the idea of

error-free reconstruction of sparse signals by �1-decoding in

the Compressive Sensing literature [1]. Through �1-decoding

we can exactly recover a given input signal as long as it is

only sparsely corrupted by error. As an extension it has also

been shown that the error vector need not be sparse per se

for perfect recovery; if it can be made compressible (its co-

efficients decay by a power law), then it will have a good

sparse approximation and also can be recovered with small

bounded error. As a result, the probability of error-free com-

pressible signal recovery will be slightly compromised com-

pared to sparse signal recovery. In �1-decoding, the recovery

algorithm does not require any information about the input

signal; interpreting this in watermarking terms, the decoding

procedure is blind to the host image.

There is no extra work in designing a specific watermark

or embedding procedure for our detection scheme to work. In

fact, it is compatible with any transform domain (DFT, DCT,

DWT, etc.) technique for watermark embedding. We use the

fact that natural images can be sparsified in some transform

basis; i.e., they can be approximately represented by a small

number of transform coefficients. This sparsified representa-

tion is obtained by thresholding coefficients below a certain

value. The watermark is simply added to the sparsified im-

age, as would be done in any transform domain watermark-

ing technique. Alternatively, instead of completely discard-

ing coefficients, we might scale them by a power-law decay

and still recover the original watermark within some bounded

margin of error. On the detection side, our �1-decoding detec-

tion technique is applied to the image in its transform basis.

The idea of sparsification of the image is the same as is

used in image compression, by JPEG or JPEG2000 for in-

stance. Therefore our proposed watermarking scheme nat-

urally lends itself to watermarking of compressed images.

There exist other watermarking schemes for compressed im-

ages, but the ones we have encountered require knowledge of

the host image [2]. Other blind watermarking schemes appear
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to have drawbacks like higher error-rates, complex decoding

due to host image modeling in an effort to be “informed”, or

statistical requirements imposed on the host image [3; 4].

2. COMPRESSIVE SENSING AND �1-DECODING

The recent theory of Compressive Sensing introduced by

Candès, Romberg, and Tao [5] and Donoho [6] demonstrates

that a length N signal that is K-sparse in one basis (the spar-
sity basis) can be recovered from O(Klog(N/K)) nonadap-

tive linear projections onto a second basis (the measurement
basis), that is incoherent with the first.

The recovery of the sparse set of significant coefficients

{θ(n)} can be achieved by optimally searching for the sig-

nal with �0-sparsest (the �0 “norm” ‖θ‖0 counts the nonzero

entries in the vector θ) coefficients that agree with the linear

measurements made. Unfortunately solving this �0 optimiza-

tion problem is prohibitively complex. The practical revela-

tion supporting CS is that it is not necessary to solve the �0-

minimization problem to recover {θ(n)}; a much easier prob-

lem yields an equivalent solution (thanks again to the inco-

herency of the bases); we need only solve for the �1-sparsest

coefficients θ that agree with the measurements y [5; 6].

CS theory requires that the measurement matrix satisfy

a certain restricted isometry property (RIP) to be incoher-

ent with the sparsity basis: an essential condition for error-

free signal recovery. Fortunately, matrices whose entries are

formed from random sampling of a Gaussian distribution sat-

isfy the RIP. We use Gaussian matrices extensively to obtain

linear measurements because of this characteristic [1].

Candès and Tao solve the noisy channel linear decoding

problem by using the sparse reconstruction technique in CS.

In this problem we want to recover a given message vector f
in Rn from corrupted measurements y = Af + e, where A is

an m × n matrix (m > n) and e is a sparse vector of errors.

We can recover f perfectly provided the vector e is sparse

enough, and therefore only a small number of elements in y
are corrupted by it. The �1-decoding attack is to accurately

reconstruct the sparse vector e, and hence recover the target

message f from f = A−1(y−e) since Am×n has full column

rank [1].

The Candès-Tao �1-decoding solution for recovering e is

as follows: (1) construct a matrix F such that FA = 0, (2)

apply F to the corrupted vector y, (3) from the resultant ỹ
= F (Af + e) = Fe, we are faced with the familiar issue of

reconstructing sparse e from its linear measurements y. Be-

sides sparsity or compressibility of e, the encoding ratio m:n
also affects the probability of error-free detection. The larger

the encoding ratio between codeword and message, the lower

is the threshold sparsity required for error-free detection [1].

This decoding approach is the main principle of our detection

algorithm: the message f is the watermark that needs to be

preserved in the sparse image e in the above model.

3. WATERMARKING SCHEME

We can draw parallels between the Candès-Tao approach to

decoding sparsely corrupted signals and detection of water-

marks buried in sparse image coefficients. In our proposed

watermarking scheme we embed a given confidential water-

mark f by first encoding it as a sequence p = Af and then

adding it to sparse image coefficients e; this will give us our

watermarked image coefficients y = p + e. This setup is

perfect for �1-decoding to accurately determine the sparse co-

efficients e, thereby also deciphering the watermark f .

3.1. Embedding

It is essential to have a sparse (or compressible) representation

of the image before the watermark can be added to it. Trans-

form domains like DFT, DCT and DWT are useful in this re-

gard, since images can be represented by a few large-valued

transform coefficients. This fact is used in image compression

where small-valued coefficients below some threshold value

are discarded. In this sense images have a sparse representa-

tion in these transform domains.

Transform-domain watermarking techniques have been

shown to be more robust and tamper-proof as compared to

straightforward spatial watermarking [7; 8]. Transform tech-

niques embed the watermark in the most critical features of

the image, so that fiddling with the image to un-watermark it

will cause image quality to deteriorate as well. Each trans-

form domain has its own virtues, the most popular ones be-

ing Discrete Cosine Transform (DCT) and Discrete Wavelet

Transform (DWT) that are used in the JPEG and JPEG2000

image compression standards, respectively.

Our proposed algorithm also adds the watermark in the

transform domain. But we introduce one extra step of either

sparsifying (to make sparse) or scaling down (to make com-

pressible) the image coefficients before adding the encoded

watermark. To simplify terminology we hereon refer to the

ratio of total number of coefficients to non-sparsified/scaled

coefficients as the compression ratio; i.e., a compression ra-

tio of 3:1 means that a third of the coefficients have been

scaled/sparsified.

We use a gaussian matrix Am×n (whose entries are gen-

erated from a secure seed known only to the embedder and

detector) to encode the confidential watermark. By doing so

we have introduced implicit security in the watermark detec-

tion algorithm since the detector requires the secure seed to

generate A, which is key for �1-decoding to work.

In the simulations in this paper we consider DCT-domain

watermarking, but the embedding / detection procedure de-

scribed remains the same for any transform domain water-

marking method. In the DCT domain we choose to embed

the watermark in the important middle band frequencies; em-

bedding in the low frequency coefficients (smooth regions

in image) makes the watermark perceptible, while the high

frequency coefficients are prone to noise, filtering and lossy
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compression. For instance, in JPEG compression the higher

frequency coefficients are typically what are eliminated after

quantization, leaving our watermarked midband coefficients

intact. In the DWT domain we would have chosen to embed

the watermark in the high resolution bands, while in DFT we

would embed in the phase component of the image.

3.2. Detection
The detection procedure involves first transforming the

image back to the transform domain and then performing

�1-decoding to obtain the original watermark.

In summary our watermarking recipe is:

Embedding: (1) Transform the image to appropriate domain

(2) Sparsify or scale the transform coefficients (3) Encode

confidential watermark using encoding matrix A generated

by seed (4) Add encoded watermark to transform coefficients.

(5) Inverse transform to get watermarked image.

Detection: (1) Transform given image to appropriate domain

(2) Recover sparse image coefficients by using �1-decoding

with given A. (3) Recover confidential watermark f by linear

operation f = A−1(y − e).

3.3. Factors affecting detection
One caveat in �1-decoding is that the image must have a cer-

tain threshold compression ratio to have error-free detection.

Hence the compression ratio plays an important role in affect-

ing detection probability. The fewer the image coefficients

that are kept, the higher will be the probability of error-free

watermark detection. On the other hand, keeping too few im-

age coefficients will affect image quality. This tradeoff should

be kept in mind; choosing the lowest compression ratio while

still maintaining error-free detection is ideal.

A second factor that affects the ability to detect the wa-

termark error-free is the encoding ratio between the encoded

watermark and the confidential watermark (m:n) as discussed

in Section 2. Generating a longer bit sequence to encode a

given watermark (using the appropriately sized Am×n) will

improve watermark detection probability in an image with a

given compression ratio.

If we are scaling the coefficients down (as opposed to

sparsifying them), the nature of scaling will affect detection

probability, given a fixed compression and encoding ratio. We

found that scaling so that the coefficients decayed according

to a power law: |α|k ≤ Bk−s required the least number of

coefficients to be modified [1]. For purpose of uniformity, we

assumed B = norm(midband coefficients to be scaled).

4. SIMULATION RESULTS

We ran simulations to compare the effect that varying com-

pression ratio, watermark encoding dimensions and coeffi-

cient scaling (as opposed to sparsifying) have on the proba-

bility of error-free watermark detection. We ran 100 itera-
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Fig. 1. Detection probability vs. Compression (by sparsity)

ratio for encoding ratio m : n (encoded watermark length :

original watermark length) of (a) 4 : 1 and (b) 20 : 1.

tions for each compression ratio, generating a new gaussian

matrix A in each iteration. Detection during an iteration was

deemed successfully error-free if the MSE of the detected wa-

termark was on the order of machine precision (10−16 in our

case). Frequency of correct detection over the 100 iterations

was plotted against the image compression ratio (whether by

sparsification or scaling). All simulations used the DCT do-

main, taking a global DCT of the image to embed the water-

mark in its midband. But the numerical results shown hold

true for any transform-domain method of watermarking.

We see from Figure 1(a) and (b) that the length of the

codeword (m) used to encode a watermark of given length

(n) will determine the threshold compression ratio at which

zero-error detection begins. The longer this codeword is, the

easier it is to backsolve and retrieve the original watermark

using f = A−1(y − e), since essentially we have an overde-

termined system of linear equations as m > n. In Figure 1(b)

we see that altering the watermark codeword length to be a

factor of 20 greater than the source watermark from a factor

of 4 improves the threshold compression ratio from approx-

imately 4:1 to just 2:1. In other words, sparsifying half the

coefficients (instead of 75% of them) will still enable us to

detect the watermark perfectly. In particular, in 8 × 8 block-

ing of DCT coefficients, a set of ∼20 middle frequencies of

the 8 × 8 block is often designated as the “midband” where

watermarks are often embedded. Therefore to embed a wa-

termark by our proposed technique only half the coefficients

in the midband need to be sparsified before adding the water-

mark, while still maintaining error-free detection. Sparsify-

ing fewer coefficients also corresponds to an improvement in

image quality, albeit very marginal; we make note here that

the DCT-embedded watermark was not visually perceptible

in any simulation despite the sparsification. This is not sur-

prising since a low quality factor JPEG compression might

discard even 70% of image coefficients and still remain indis-

tinguishable to the eye.

Figure 2(a) illustrates detection probability as it is affected

by scaling the coefficients instead of sparsifying them. The hit

we suffer is that now a minimum of 66% of the coefficients

require scaling as opposed to just half of them in Figure 1(b)
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Fig. 2. (a) Detection probability vs. Compression (scaling)

ratio after scaling by power law decay with decay constant

s=5, and (b) Detection probability affected by Poisson noise

attack (compression by sparsifying)

for the same m : n encoding ratio.

Lastly, in Figure 2(b) we attack the image with Poisson

noise from randomly sampling a Poisson distribution of vari-

ance 0.5. It appears that the watermark is now more difficult

to detect at low compression ratios, and the higher the vari-

ance, even more difficult the error-free detection. Also, our

detection scheme is not robust to Gaussian attack; this is a

topic of further research (Section 5).

However, we make note that our requirements to qual-

ify as a “successful” detection attempt in this analysis are

extremely strict: the detected watermark should be equal to

the original within machine precision accuracy. If we were

to slightly raise the permissible MSE threshold to qualify as

successful detection we would also raise probability of detec-

tion success. This would be competitive with other detection

algorithms whose main concern is simply detection – not nec-

essarily error-free watermark decoding. On the other hand, it

would be prone to false positive and false negative detection.

5. DISCUSSION AND CONCLUSIONS

The watermarking technique that we have proposed has some

principal advantages. Despite being a blind scheme (no ac-

cess to host image) it guarantees watermark detection and

estimation accuracy if the image has the required minimum

compression. If the image is already compressed, then the

watermark can be added immediately; else the image coef-

ficients can be appropriately zeroed out or scaled down to

attain the minimum required compression. The confidential

watermark is encoded by a Gaussian matrix with a secret

seed known only to the detector; in this sense detection is

inherently secure against a rogue third party who may want

to remove the watermark. Futhermore, our scheme can adopt

existent watermark design methods in transform domain wa-

termarking for still improved image quality.

Since the advent of image compression, watermarking

schemes have been developed to take advantage of com-

pressed data. Our �1-decoding-based watermarking scheme

nicely lends itself to this function, since the sparsification

step before adding the watermark is already done. The �1-

decoding procedure is a linear program with especially low

complexity, and is therefore suitable for doing watermark de-

tection on the fly as has been proposed by other compressed

image watermarking methods [2]. A potential application for

a fast decoding solution might be watermark detection in a

digital camera that already stores JPEG-compressed data. The

decoding accuracy of the algorithm renders it particularly use-

ful for error-intolerant data-hiding applications in which per-

fect message decryption is critical.

An important area of investigation for our watermarking

algorithm is its robustness against attacks. The choice of en-

coding matrix A plays a role in surviving noise attacks; we

have shown that using a gaussian matrix to encode the water-

mark is resistive to Poisson noise. It is not known which mea-

surement matrix is optimal; this is an area of ongoing research

in CS [9]. We are also concerned with watermark survival

after image compression; embedding in midband frequency

coefficients (as opposed to higher frequencies) improves, but

does not guarantee compression-survival. We plan to explore

intelligent watermark coefficient scaling methods to improve

on this.
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