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ABSTRACT 

 
Digital watermarking is an effective and promising 
approach to protect intellectual property rights of digital 
media. Spread spectrum (SS) is one of the most widely used 
image watermarking schemes. In SS watermarking, the 
watermark signal is usually modulated by the just-
noticeable difference (JND) of the host image. The JND is 
measured by advanced perceptual models as a non-linear 
function of local image features. In this paper, the optimum 
detection scheme for such non-linearly embedded 
watermarks is addressed. Closed-form detectors are found 
for arbitrary JND models that exploit the self-masking 
property of the human visual system. 
 
Index Terms—digital watermarking, watermark detection, 
spread spectrum, human visual system, perceptual masking, 
Neyman-Pearson criterion 
 

1. INTRODUCTION 
 
Digital watermarking has been demonstrated to be effective 
in protecting intellectual property rights. It plays an 
important role in multimedia security applications. In this 
paper, we focus on watermarking of images, although the 
general idea can be easily extended to other forms of media.  

In designing image watermarking schemes, robustness 
and invisibility are two desirable features. There is always a 
tradeoff between these two requirements. Among others, 
spread-spectrum (SS) watermarking [1] is an important 
approach because of its robustness to attacks and easiness to 
exploit properties of the human visual system (HVS). To 
achieve the best invisibility-robustness tradeoff, the 
watermark signal in an SS system is usually modulated by 
the just-noticeable-difference (JND). Now the questions to 
be answered are 1) how to model the JND and 2) how to 
optimize the detector based on the JND model. 

In the literature, additive/multiplicative watermarking 
schemes are widely used approaches [2]. The former uses a 
small constant to control the watermark strength while the 
latter modulates the watermark by the amplitude of the local 
image feature. Both implicitly employ a linear perceptual 
model, i.e., the JND is modeled as a linear function of the 
local image feature, which is not precise enough to exploit 

the HVS properties. In comparison, Podilchuk and Zeng’s 
work [3] is more sophisticated. They employ a non-linear 
self-masking model to measure the perceptual redundancy, 
which is based more closely on the research results of 
human vision, and has shown better visual quality than the 
original SS watermarking scheme [3]. 

As for the detection schemes of SS watermarking, the 
linear correlation detector (LCD) has been extensively used. 
However, it has been proved that LCD is not an optimum 
solution unless the host signal is white Gaussian and the 
embedding is additive. In recent years, advanced researches 
on optimum detectors have been reported. Readers are 
referred to [4][5][6][7] for detectors designed for additive 
watermarks, and [8][9] for multiplicative ones. However, no 
optimum detection scheme for watermarks based on non-
linear perceptual models have been reported except for the 
authors’ preliminary work [10], in which the watermarks are 
embedded using Podilchuk and Zeng’s approach, and the 
host signal is assumed to follow the generalized Gaussian 
distribution (GGD). In this paper, we extend our study to 
arbitrary JND models that exploit the self-masking property 
of the HVS, with arbitrary host-signal distributions. 

The rest of the paper is organized as follows. Section 2 
formulates the non-linear embedding process that exploits 
the self-masking property of the HVS. The optimum 
detection is derived in Section 3. Simulation results are 
presented in Section 4. Section 5 concludes the paper. 

 
2. PERCEPTUAL SPREAD-SPECTRUM 

WATERMARKING WITH SELF-MASKING 
 
The block-diagram of perceptual SS watermarking is 
illustrated in Fig. 1. Let x = {x1, x2, …, xN} be a set of image 
features to be watermarked. In the majority of state-of-the-
art watermarking schemes, the features are selected to be 
coefficients in a particular transform domain such as the 
DCT, DWT or DFT domain, to efficiently exploit the HVS 
properties and to be compliant with image compression 
standards. We assume xi’s are i.i.d. random variables, of 
which the probability density function (PDF) is fX. Let w = 
{w1, w2, …, wN} be the watermark signal of which the 
elements are pseudo-randomly generated based on a secret 
key. Without loss of generality, let E{wk} = 0 and D{wk} = 
1 for k = 1, 2, …, N. 
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Sophisticated embedding strategy employs the HVS 
properties and maximizes the embedding strength to the 
JND of the image by: 
 yk = xk + JNDk  wk, (k = 1, 2, …, N) (1) 
where JNDk is the largest possible distortion to xk without 
being noticed by human eyes. One possible setting is to let 
wk take the value from {+1, –1} to fully exploit the HVS. 

Although JNDk is in general related to xj even if j k, 
HVS studies reveal that xk plays the most important role in 
JNDk. In other words, the distortion to xk introduced by the 
watermark is best concealed by xk itself. This phenomenon 
is also known as self-masking. Most watermarking schemes 
focus on self-masking. In this paper, we restrict JNDk to be 
a single variable function of xk with JNDk = JND(xk), and 
formulate the perceptual SS watermark embedding as 
 yk = G(xk) = xk + JND(xk)  wk, (k = 1, 2, …, N). (2) 

 
3. THE OPTIMUM DETECTION SCHEME 

 
Given any observed sample y, the detector needs to make a 
decision between two hypotheses: 
 1

0
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H y x JND x w
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Here we introduce a factor  to denote the strength of the 
watermark. If the watermark is not supposed to be attacked 
before detection,  = 1. But in most cases we are more 
interested in detecting watermarks in degraded images, 
where the watermark strength is decreased to a small 
positive number. This is also known as robust detection [8]. 

In our previous work [10], for a particular JND model 
[13] we propose to transform the test features to a 
perceptually uniform domain, where the non-linearly 
embedded watermarks turn out to be additive ones. Then the 
Bayesian hypothesis testing can be applied to derive a 
closed-form solution. The resulting locally optimum 
detector (LOD) is a generalized correlation detector (GCD), 
of which the block diagram is shown in Fig. 2. A GCD pre-
processes each observed feature point before the correlation 
with the watermark signal, i.e. 
 N

k
kk wyg

N
GCD

1
)(1y . (4) 

In this section, we do not follow the perceptually-
uniform approach. In stead, we will explicitly find an 
optimum pre-processing )(ˆ xg  for a given JND model, 

which achieves the best error performance among all 
GCD’s according to the Neyman-Pearson criterion. 

 
3.1. Error Performance of a GCD 
 
According to the central limit theory (CLT), the output of a 
GCD is a Gaussian random variable. More specifically, for 
a particular image feature set y, if not watermarked, a GCD 
will output a Gaussian variable with the mean m0 and the 
standard deviation 0; if it is watermarked, the distribution 
will have the mean and the standard deviation being m1 and 

1. It is the 4-tuple (m0, 0, m1, 1) that determines the error 
performance of a GCD. 

To detect the existence of a watermark, the decision is 
made by comparing the GCD’s output to a pre-defined 
threshold. There are two types of errors that could occur: an 
error of false alarm occurs if the output is greater than the 
threshold but the image is actually not watermarked; on the 
other hand, if the output is smaller than the threshold for a 
watermarked image, an error of miss occurs. Generally, the 
decision threshold  is chosen such that the probability of 
false alarm (Pf) is fixed. Then, an optimum detector should 
minimize the probability of miss (Pm). In other words, the 
probability of detection (Pd = 1 – Pm) should be maximized. 
This is also known as the Neyman-Pearson criterion [11]. 

By assuming that the output of a GCD is asymptotically 
Gaussian, we can calculate Pf and Pd as follows 
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where 21( ) exp 2
2 x

Q x t dt . 

The receiver operating characteristics (ROC) describes 
the relationship between Pf and Pd: 
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Now we will estimate the 4-tuple (m0, 0, m1, 1) for a 
GCD. Under hypothesis H0, the mean of (4) is 
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and the variance is 
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Under hypothesis H1, the mean of (4) is 

Fig. 1: Block-diagram of perceptual SS watermark-embedding. The 
watermark signal is first modulated by the JND before embedding 
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Fig. 2: Block-diagram of a generalized correlation detector. The 
observed features are pre-processed before the correlation. 
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where the approximation is based on the first-order Taylor-
series, assuming the watermark can be considered as a weak 
signal. There is an implicit assumption that g(x) is derivable. 
Similarly we derive that 2

0
2
1

 for weak watermark 
signals. Now the ROC in (6) can be simplified as 
 1 1

1
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3.2. The Optimum GCD 
 
The error performance of a GCD can be measured by m1/ 1 
since Q(x) is monotonically decreasing. Thus the optimum 
GCD should have the pre-processing )(ˆ xg  maximizing: 
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If we roughly assume x is an ergodic process, the time 
average in (11) can be replaced with the ensemble average: 
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By noticing that h(g(x)) = h( ·g(x)) when  is a positive 
constant number, we can always normalize the denominator 
and assume that 
 1)()( 2 dxxfxg X

 (13) 

and equivalently, we are to find the optimum )(ˆ xg  which 
maximizes the numerator of (12) conditioned on (13). This 
is usually solved by exploiting a Lagrange multiplier 

dxxfxgdxxfxJNDxgxg XX )()()()()()( 2
2  (14) 

We solve (14) by using the Euler-Lagrange differential 
equation [14] in calculus of variations and derive the 
optimum pre-processing to be 
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So far we have found the optimum GCD which provides 
the best error performance based on the Neyman-Pearson 
criterion. This result, not surprisingly, agrees with the LOD 
derived from the perceptually-uniform domain. More 
detailed derivations can be found in [12]. 

 
4. SIMULATION RESULTS 

 

In this section, we use the DCT-domain watermarking 
approach proposed in [3] as an example to test the 
performance of our detector. A comparison is made with the 
LCD, which does not perform any pre-processing before 
correlation (that means g(x) = x in (4)).  

The embedding procedure of [3] is summarized as 
follows: the host image is decomposed using 8 8 block 
DCT, resulting in one DC subband and 63 AC subbands. 
For each AC coefficient xk, the JND for xk is calculated 
using a non-linear transducer [13]: 
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where CT0 is the basic threshold (see [3] for details). If xk’s 
amplitude is greater than JND(xk), watermark is embedded 
using (2); otherwise it is left unchanged. The reason to 
embed watermarks only to those coefficients with large 
amplitudes is that the weak features are vulnerable to 
attacks such as quantization. In this case, it is easily proved 
that the following non-linearity always holds for any image 
feature that is chosen for watermark embedding 
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For DCT/DWT domain AC coefficients, a commonly 
used model is the GGD with zero mean. That is 
 fX(x) = A exp(–| x|c) (18) 
where A,  and c can be estimated based on the test image. 

The LOD is derived from (3) and (15) as 
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where ck and k depends on the subband of yk. In the 
following simulation, we assume the AC coefficients of an 
image are roughly i.i.d. Laplacian (ck = 1). This is a 
simplified approach, but still works well in the simulations. 

We first compare the detection performances of the LOD 
and the LCD on watermarked images without attacks. Three 
512 512 Lena images is used for testing. Both of the two 
detectors are normalized such that their outputs have unit 
variance under hypothesis H0 ( 0=1), thus the two 
distributions under H0 basically overlap with each other. 
1000 different watermarks are tested for each distribution. 
The distributions of the outputs are shown in Fig. 3. A 
significant improvement is observed by using the LOD. 

Then the detection performance is tested under JPEG 
attacks. The results are shown in Table I. As discussed 
above, we have m0=0 and 0=1 for both the LCD and the 
LOD, thus only the (m1, 1) pairs are listed in Table I. JPEG 
compression under various quality factors is applied, 
including the no-compression cases, which are the 
numerical results of those displayed in Fig. 3. From the 
table we can see, as the quality factor gets lower, the 
detection performances keep going down, as expected. But 
LOD always performs better than LCD, in the sense that the 
(m1/ 1) values are always greater by using the LOD. 
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To plot ROC curves, the Lena image is first sub-sampled 
to 32 32 before embedding and detection. Otherwise the 
error rate is too small. Note that in this case the distribution 
of a detector’s output is less Gaussian-like because the CLT 
needs a large number of samples to take effect. Nevertheless 
we still use (6) for the theoretical ROC curves, and the 
comparison with the real ones shows that this is a 
reasonable approximation. 10000 watermarks are tested for 
each detector in each case. The results shown in Fig. 4 
demonstrate that the LOD always outperforms the LCD. 

 
5. CONCLUSIONS 

 
In this paper, optimum detection is studied for SS 
watermarks with arbitrary JND models that exploit self-
masking. The optimum detector is derived in a closed form, 
which performs non-linear pre-processing to each observed 
feature before the correlation with the watermark. We have 
found the best pre-processing which optimizes the error 
performance in the sense of Neyman-Pearson criterion. The 
theoretical analysis is supported by simulation results. 
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Fig. 3: Output distributions of the detectors 

Table I: Comparison of the performances of the LCD and the LOD under 
JPEG compression. Each Distribution is tested on 1000 watermarks. 

Q. Factors N/Aa 70 50 30 10 
m1 58.9 38.1 29.5 22.6 11.3 

1 1.29 1.01 0.92 0.93 0.93 LC
D

 

m1/ 1 45.7 37.7 32.1 24.3 12.2 
m1 131 71.1 50.5 36.9 14.4 

1 1.03 0.89 0.78 0.85 0.90 

LO
D

 

m1/ 1 127 79.9 64.7 43.4 16.0 
aN/A means no compression.
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(a)    (b)    (c) 

Fig. 4. ROC curves for the 32 32 Lena image after (a) scaling with a factor of 0.3 and adding Gaussian noise with n
2 = 100; (b) JPEG compression with 

the quality factor being 30 and (c) JPEG 2000 baseline compression with the bit-rate being 0.5bpp 
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