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ABSTRACT

The performance of current blind watermark decoders against desyn-
chronization attacks is rather poor. Such attacks include filtering,
amplitude modulation, gamma correction, time-varying delays, and
spatial warping. We propose a new family of watermark decoders
based on modern methods for iterative decoding using graphical
models. This approach addresses the “curse of dimensionality”
problem that seemingly results when the desynchronization param-
eter space has high dimensionality.

Index Terms: Watermarking, data hiding, desynchro-
nization, coding, graphical models

1. INTRODUCTION

One of the main technical obstacles to the deployment of wa-
termarking systems has been the limited resilience of com-
monly employed coders and decoders to desynchronization
attacks. Such attacks include filtering, amplitude modula-
tion, gamma correction, time-varying delays, and spatial warp-
ing. The problem can be addressed by embedding water-
marks in a domain that is invariant to such operations [1, 2],
by embedding pilots (synchronization sequences) [3, 4, 5,
6, 7] or by jointly decoding the watermark and estimate the
desynchronization attack parameters [8, 9, 10]. Our recent
research has established optimality properties of the last ap-
proach [11, 12] in an asymptotic setup, but the practicality of
this approach is a concern due to the need for a search over a
possibly large parameter space.

This paper introduces a practical computational frame-
work for decoding in the presence of desynchronization at-
tacks, using graphical models for the host signal, the water-
marking code, and the attack channel. The reader is referred
to the books by Lauritzen [13], Pearl [14] and Frey [15] as
well as the articles [16, 17, 18] for a general introduction
to graphical models. These models appear to be particu-
larly appropriate for watermarking of media signals because
the underlying probabilistic models are local, and inference
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problems such as watermark decoding can be solved using
iterative belief propagation algorithms. In our study of this
problem, we have chosen to focus on the problem of blind
decoding, in which the host signal is not known to the de-
coder. The reason for this choice is that it is known be be an
extremely challenging problem [19]. Only limited success
has been achieved against desynchronization attacks on blind
watermarking systems, and this limited success was obtained
using simple attacks – such as a pure delay, or a pure ampli-
tude scaling. In contrast, the methodology presented here is
applicable to fairly general desynchronization attack models
involving large parameter spaces. We illustrate our approach
with numerical results for an amplitude modulation attack.

2. DESYNCHRONIZATION-RESILIENT
DECODING

A fairly general communication model for watermark decod-
ing is depicted in Fig. 1. A boldface notation is used for se-
quences and vectors. A message (digital signature) m is em-
bedded in a length-N host sequence s = {s(1), · · · , s(N)},
aided by side information k shared with the receiver. The sig-
nal after embedding is denoted by x = f(s,m,k). In some
cases, no embedding takes place (say when m = ∅), and
the encoding function f simply reproduces s. The receiver
does not observe x directly, but at the output of an insecure
channel modeled by a conditional distribution p(y|x). For
instance p(y|x) could be a simple memoryless channel, such
as an additive white Gaussian noise channel. But the inse-
cure channel need not be memoryless or even causal. The
watermarking problem is therefore intimately related to the
problem of communication over an uncertain channel. There
exist well established information-theoretic methods to ana-
lyze such problems [20, 21].

The receiver has access to y and k and produces an esti-
mate of m. The side information k may be a cryptographic
key, but may also be used to convey information about s to
the receiver. A blind receiver is not given access to s; this
problem is the most challenging one, calling for the use of
special codes (binning codes) to deliver high performance
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Fig. 1. Communication model for watermarking.
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Fig. 2. Model for desynchronization attacks.

[19]. The setup of Fig. 1 is applicable both to authentica-
tion problems (in which case the set M of possible messages
is typically small) and to data hiding (in which case M is
large, typically exponentially increasing in the length of the
sequence s).

The decision rules used by blind watermarking decoders
are generally minimum-distance rules or variations thereof.
Such decoders – especially those used in conventional bin-
ning schemes for blind watermarking – typically fail when
the channel introduces signal processing operations such as
filtering, amplitude scaling, modulation, delays, warping, etc.
The perceptual effects of such operations are normally quite
weak, but the receiver is desynchronized, and its decoding
performance can be catastrophic. In our communication model,
desynchronization operations are absorbed as part of the chan-
nel model class P . A typical formulation of the problem
would include a parametric model, with desynchronization
parameter θ. In the simplest setting, the dimensionality of θ

does not depend on N ; more generally, θ may be a sequence
θ(n), 1 ≤ n ≤ N , that exhibits temporal coherence prop-
erties, i.e., it is slowly varying, with occasional jumps. An
hypothetical decoder that is informed of the values of these
parameters is a coherent decoder; the decoder that does not is
a noncoherent decoder. We shall be interested in construct-
ing good noncoherent decoders, and in estimating the nonco-
herent decoding penalty.

Basic examples of parametric desynchronization are:

• Amplitude scaling: y(n) = θx(n), θmin ≤ θ ≤ θmax.

• Gamma correction: y(n) = x(n)θ, θmin ≤ θ ≤ θmax.

• Temporal shifts: y(n) = x(n − θ) for integer shift θ.
If θ is not an integer,

y(n) =
∑

i

hi(θ)x(n − i) (1)

is a resampled version of the shifted, interpolated sig-
nal x, where hi(θ) are the taps of the interpolation fil-
ter (would be a sinc for bandlimited interpolation). If
θ is a constant, (1) is a particular linear time-invariant
filter. If θ varies slowly over time (as is the case with
warping attacks), (1) is a linear time-variant filter.

A variety of methods have been devised to resist sim-
ple types of desynchronization attacks [1]—[10]. These in-
clude the idea of invariant domains and use of pilots or train-
ing sequences, which convey information about θ (but not
about m) to the receiver [3, 4, 5]. A theoretically superior
approach is to design a code that lends itself to resynchro-
nization, without wasting resources communicating training
sequences that are not information-bearing [20, 6, 7]. As an
example of this approach, some of the best results to date
for the blind embedding problem have been obtained by Bal-
ado et al. [9]. They explore the use of the EM algorithm
for simultaneously decoding messages and estimating scale
parameter or delay parameters. In more recent work [10],
they explored the use of phased locked loops as an alterna-
tive to the EM algorithm. Two disturbing facts about their
solution are that (1) very poor performance is obtained when
the desynchronization is moderate or large, and (2) the pa-
rameter estimates are not consistent, i.e., the estimation er-
rors do not tend to 0 as the host signal length N increases.
Our recent work [11, 12] has proved the existence of univer-
sal decoders for such problems, i.e., noncoherent decoders
whose error exponents are identical to those of the corre-
sponding coherent decoder (which knows θ). This theoreti-
cal result suggests that the decoding performance of [9, 10]
can in principle be substantially improved.

3. GRAPHICAL MODELS

A particularly exciting opportunity in the watermark decod-
ing problem is the possibility to combine the Bayesian paradigm
for optimal decision making with inference techniques on
graphical models [14, 15, 16]. For instance, classical Kalman
filtering (or Kalman smoothing) may be interpreted as an in-
stance of probabilistic inference in a special Gaussian graph-
ical model. The use of Bayesian recursive filters in lieu of
Kalman filters is a natural extension to this technique to non-
linear state-space models.

The opportunity of graphical models in the context of wa-
termark decoding consists of a way to embed a message with
some redundancy in a host which can exhibit long range de-
pendencies among the signal components. The final estima-
tion can then be organized in such a way that the Bayesian
estimator and an estimator for the data redundancy itera-
tively solve the probabilistic inference problem. This iter-
ative approach to estimating data in noisy environments has
been very successful in data transmission and is dubbed the
“turbo” principle in a communication setup. In our context
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we want to fully exploit the power of this approach even
in hostile and very difficult environments as would be con-
stituted by an active attack on the decoding scheme. As
such, our approach is motivated by work on the probability
propagation (sum-product) algorithm for iteratively decod-
ing error-correcting codes, such as “turbo codes” [15]. Until
recently, optimal decoding even on Gaussian channels was
thought to be intractable. However, it turns out that proba-
bility propagation in a graphical model describing the code
solves the problem for practical purposes.

The power of this approach is even more apparent in two-
dimensional data sets as they naturally appear in watermark-
ing of images or video sequences. In this case a graphical
model may be used to estimate a distortion or alteration in the
properties of the host data. Together with a powerful, inter-
leaved code that protects the embedded data we obtain an ef-
ficient scheme for data embedding. Moreover such a scheme
is computationally feasible due to its inherent divide-and-
conquer philosophy. This approach has revolutionized much
of communications in the last few years and we believe that it
holds the potential to give similarly significant and practical
improvements for the watermark decoding problem.

The “curse of dimensionality” is a problem that is effi-
ciently addressed in graphical models. In fact, one might ar-
gue that graphical models were specifically invented to cope
with inference problems in high dimensional setups. The es-
sential trick is to find a decomposition of the posterior prob-
ability density function such that estimation and hypothe-
sis testing has a tractable structure. The generic problem in
our problem setup would be one where the adversary has K

possible transformations (the first one being time warping,
possibly using a multiscale representation for the warping
process; the second one might be an amplitude modulation,
again using a multiscale representation for the envelope; etc.)
The key to coping with the dimensionality of such a model
is to find (or model) a factorization of the probability density
as is e.g. done in factor graphs [15, 16]. Once this is done,
powerful inference algorithms such a the sum-product algo-
rithm can effectively construct excellent approximations to
the global objective function [15, 16].

4. AMPLITUDE MODULATION

We have developed a scheme that uses graphical models for
the problem of recovering a watermark under an amplitude
modulation attack. The complete probabilistic model is as

follows. We seek the MAP estimate of m given y.

p(s) =
∏
i∼j

ψij(si, sj) (2)

c = c(m) (3)
xi = F (si, ci) (4)

p(w) =
∏

i

pW (wi) (5)

yi = θi (xi + wi) (6)

p(θ) =
∏
i∼j

φij(θi, θj) (7)

In (2) and (7), s and θ are modeled as MRFs with second-
order cliques and potential functions ψij(si, sj) and φij(θi, θj),
respectively. The products are over all pairs of neighbors
i ∼ j. The alphabet for the codeword symbols in (3) is
{±Δ

4 }. The function F in (4) is the scalar QIM embedding
function

F (s, c) = Q(αs − c) + (1 − α)s + c

where α ∈ (0, 1] is the distortion-compensation (Costa) pa-
rameter. The attacker adds white noise w from (5) to x and
applies amplitude modulation to the sum, as described by (6).
The resulting data are available to the decoder.

A factor graph modeling the probabilistic model described
above is shown in Fig. 3. All variable and factor nodes are
circled and shaded respectively. We attempt to compute the
posterior distribution of m given y, by applying the sum-
product algorithm to the above (loopy) factor graph. The
algorithm is initiated with all messages set to unity and up-
dated thereafter according to the following variable-to-factor
(v → F ) and factor-to-variable (F → v) node message up-
date equations [15]:

μv→F (v) =
∏

G∈ne(v)\F

μG→v(v) (8)

μF→v(v) =

∫
u

f(v,u)

K∏
i=1

μui→F (ui)du (9)

where, ne(v) is the set of neighbors of v, f(·) is the function
associated with factor node F and u = [u1, u2, . . . uK ] is the
vector containing all the neighbors of F , excluding v.

We compare the performance of the proposed decoder
with a coherent decoder (that knows θ). We chose a white
Gaussian host with each component having mean zero and
variance σ2

s = 502. Note that any correlation present in the
source (which normally is the case) can only help the decoder
to perform better. The code is a simple block repetition code
with block length equal to 8, hence the embedding rate is 1

8
bits per sample. For embedding we used Δ = 17.32, result-
ing in an embedding distortion D1 = Δ2

12 = 25. The noise
w is Gaussian with mean zero and variance D2 = D1. For
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Fig. 3. Factor graph representation for the probabilistic
model in (2) – (7)

the amplitude field θ, we explore three possibilities: (i) θ

has i.i.d. components, each drawn from a N (1, 0.01) distri-
bution. This poses the toughest scenario; (ii) Components of
θ are not independent but have nearest neighbour dependen-
cies through (7); the amplitude field is Gauss-Markov with
mean 1, variance 0.01, and a normalized correlation coeffi-
cient ρ equal to 0.9 and (iii) All components of θ are same,
representing amplitude scaling as a special case of amplitude
modulation.

We first evaluated the performance of the coherent de-
coder that knows the amplitude field θ and can therefore in-
vert the AM operation. The estimated error probability, eval-
uated from 104 Monte-Carlo simulations, was approximately
Pe = 2.7 × 10−3 in all cases.

Next we evaluated the performance of our noncoherent
decoder. For each simulation, the belief propagation step
must be repeated until the estimates of m were stabilized.
Again by performing 104 Monte-Carlo simulations, we ob-
tained Pe = 0.0231, Pe = 5.6× 10−3 and Pe = 4.1× 10−3

for cases (i), (ii) and (iii) respectively.
An extension of the current results to two dimensions is

quite straightforward. A more interesting extension would
be to test the feasibility of reliable watermark detection, in
the presence of desynchronization attacks, on image models
which are less synthetic. We will explore that in the future.
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