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ABSTRACT

We introduce a novel asymmetric watermarking scheme, in-
volving a private key for embedding and a public key for de-
tection, and we detail its statistical analysis, relying on Ney-
man-Pearson criterion. The proposed scheme solves part of
the problems connected to previous watermarking approaches
based on linear algebra. In particular, special attention is paid
at reducing the side information required at the detector, as
well as at achieving higher robustness by enphasizing the con-
tribution of the watermark in the detection phase.
Index Terms— asymmetric watermarking, statistical anal-

ysis, linear algebra

1. INTRODUCTION

Digital watermarking and cryptography represent two differ-
ent approaches to achieve security in telecommunications. Re-
cently, the scientific community has started to investigate their
connections, becoming increasingly aware of the potential va-
lue and effectiveness of hybrid solutions. In particular, the
analogy with public key cryptography suggests to consider
asymmetric watermarking, involving a private key for embed-
ding and a public key for detection (see [1], [2] and [3] for a
detailed survey and a critical discussion).
Starting from [4], we are exploiting linear algebra tools

for designing asymmetric watermarking schemes. We stress
that our approach substantially improves previous ones. In-
deed, the eigenvector watermarking scheme introduced in [5]
has been defeated by an effective attack (see [6], Section 4.4)
and the weakness of the method presented in [7] has been
demonstrated in [8]. On the other hand, in the scheme pro-
posed in [9] the watermark cannot be chosen arbitrarily, but
it turns out to be heavily dependent on the host image (see in
particular statement c) of the Theorem on p. 787, which shows
that the watermark is forced to be a suitable multiple of a se-
quence deterministically extracted from the original image).
As a consequence, the method of [9] is appropriate just for
copyright protection, where only one key is assigned to each
image, but definitely not for fingerprinting, where every recip-

ient is identified by its own key. On the contrary, our approach
is suitable also for fingerprinting, allowing the insertion into
any image of different watermarking sequences (even sequen-
tially into the same image, see [10]).
In this paper, a substantial step forward is introduced, con-

sisting of two main improvements. First, we reduce the side
information required by the detector, and second we enforce
the robustness of the method by introducing a new parame-
ter β which emphasizes the contribution of the watermark in
the detection phase. These two aspects are fundamental for
the viability of the proposed method in practical applications.
A detailed statistical analysis of the watermarking scheme is
provided under the standard assumption (for analytical pur-
poses, see [11]) that the cover image is i.i.d. zero mean Gaus-
sian distributed.
Correspondingly, Section 1 provides a formal description

of the method, while Section 2 is devoted to its statistical anal-
ysis. Finally, Section 3 collects some numerical results and
concluding remarks.

2. WATERMARKING SCHEME

We are going to construct an asymmetric watermarking pro-
cedure suitable for digital fingerprinting. Let V be a feature
space of dimension d (for instance, the space R

d correspond-
ing to the entries in the top left corner of the DCT of a digital
image), fix an original φ ∈ V and let {u1, . . . , un} be an or-
dered set of users. For each i = 1, . . . , n, the user ui is associ-
ated with a secret signature si ∈ V such that {φ, s1, . . . , sn}
is an orthogonal set of vectors.

2.1. Watermark embedding

For each user ui the following algorithm is implemented:
1) Watermark setting: set ψi := αsi with 0 < α << 1 in

order to meet the usual imperceptibility requirement
2)Watermark insertion: watermark the copy of φ assigned

to user ui by setting φi = φ+ ψi.
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3) Definition of auxiliary matrices: choose a d × d or-
thogonal matrix Mi and let φ = Mivi and ψi = Miwi

(i.e. vi, resp. wi, are the coordinates of φi, resp. ψ, in
the basis given by the columns of Mi). Fix a real parame-
ter β ≥ 1, which controls the impact of the watermark energy
in the detection phase, and let b1 := vi+βwi

‖vi+βwi‖ and complete
it to an orthonormal basis (b1, b2, . . . , bd) of R

d such that
< b1, b2 >=< vi, wi > (where < ... > denotes linear span).
If Ni is the matrix with bt as the t-th column (t = 1, . . . , d)
and Πi = (ei|e2| . . . |ei−1|e1|ei+1| . . . |ed) is the matrix that
permutes the i-th coordinate vector ei and e1, then

Ai = ΠiΔN
T
i (1)

where

Δ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 . . .
0 S 0 . . .
0 0 K . . .
...

. . .
...

0 . . . K 0 . . .
0 . . . 0 . . .
...

...

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

withK >> 1 an integer appearing k times and 0 < S << K
a secret real parameter.
4) Public key releasing: release to the public the detection

key Di = ‖vi + βwi‖AiM
T
i . Since Ai is not invertible, the

secrets φ and ψi cannot be reconstructed from Di.
With this definition of the public key the side information

needed by the detector is substantially reduced in comparison
with previous approaches [4], [10].

2.2. Watermark detection

Let now φe be an extracted feature. The watermark detection
is accomplished by the decision function

δi(φe) =

{
1 if |sim(ei, Diφe)| ≥ T
0 otherwise (2)

where T = T (β) is a suitable threshold and

sim(ei, Diφe) =
eT
i Diφe

‖Diφe‖ (3)

Definitions (2) and (3) for the detector are motivated by
the following fact:

Proposition 1. For every i = 1, . . . , n, we have

sim(ei, Diφi) =
‖vi‖2 + β‖wi‖2

‖Diφi‖
sim(ei, Diφ) =

‖vi‖2

‖Diφ‖
In particular, if β >> 0 then there exists a decision threshold
T = T (β) with 0 < T << 1 such that δi(φi) = 1 and
δi(φ) = 0.

The introduction of parameter β, which regulates the im-
pact of the watermark energy at the detector, is therefore cru-
cial for the aim of increasing the robustness of the method.

3. STATISTICAL ANALYSIS

For the sake of simplicity we consider the case n = 1, so that
A is as in (1) with Π1 the identity matrix. Let now φe be an
image to be tested. We have two alternative hypotheses:

H0 : φe does not contain w
H1 : φe contains w

The detection aims at defining a test of hypothesisH1 ver-
sus the alternative H0. The Neyman-Pearson detection crite-
rion (see for instance [12]) maximizes the probability of wa-
termark detection Pd subject to a constraint on the maximum
false detection probability P̄f . The threshold T in (2) is cal-
culated in order to satisfy P{|sim(e1, Dφe)| ≥ T |H0} = P̄f .
In order to apply the Neyman-Pearson criterion it is nec-

essary to know the statistical models of the watermark, the
host image and the noise introduced by the attacks.

3.1. Hypothesis H0

We are interested in determining the probability of false alarm
Pf where the similarity detector sim(e1, Dφe) is used with
input φe, a non watermarked image. For mathematical tracta-
bility, we assume that vector φe is i.i.d. zero-mean Gaussian
with variance σ2

φe
.

Note that since D = ‖v + βw‖AMT , with M an or-
thogonal matrix, it follows that Dφe is Gaussian distributed
with covariance matrix ‖v + βw‖2

Δ2. Therefore, eT
1 Dφe is

Gaussian with zero mean and variance σ2
φe
‖v + βw‖2. On

the other hand, the term ‖Dφe‖ has the same distribution as
the random variable ‖v+βw‖(x2

1 +S2x2
2 +K2

∑k+2
i=3 x

2
i )

1
2 ,

where k is the number of elements equal to K in the diag-
onal of A and xi ∼ N (0, σ2

φe
) for every i. Since K >>

max{1, s}, we can consider instead the approximation ‖v +

βw‖K(
∑k+2

i=3 x
2
i )

1
2 . Notice that this random variable is in-

dependent of eT
1 Dφe. This fact will be very useful in the

computation of Pf .
Moreover, we can normalize by ‖v + βw‖σφe

both the
numerator and the denominator of the similarity function to
arrive at the following approximately equivalent problem:

Pf = Pr

⎧⎪⎨
⎪⎩

x1

K
(∑k+2

i=3 x
2
i

) 1
2

> T

⎫⎪⎬
⎪⎭

where T is the threshold and xi ∼ N (0, 1) for all i. Equiva-
lently, we can write

Pf = Pr

⎧⎨
⎩x1 > TK

(
k+2∑
i=3

x2
i

) 1
2

⎫⎬
⎭
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The term R = (
∑k+2

i=3 x
2
i )

1
2 follows a generalized Ray-

leigh distribution with pdf PR(r) = rk−1

2
k−2
2 Γ( k

2 )
e−

r2

2 , r ≥ 0,

k ≥ 1 where Γ() denotes the Gamma function. Then, in
order to compute Pf we can fix a value of x1 and determine
the probability that R is smaller than x1

TK
. Finally, we must

average the result with respect to the pdf of x1. Hence

Pf =

∫ +∞

−∞
Pr

{
R <

x1

TK

}
fx1

(x1)dx1

The cumulative distribution function of R for the case k
even, i.e. k = 2m, is FR(r) = 1−e− r2

2

∑m−1
n=0

1
n!

r2n

2n r ≥ 0.
Hence

Pf = 1 −
m−1∑
n=0

1

n!2n
√

2π

∫ +∞

−∞
e−

x2
1

2T2K2
x2n

1 e−
x2
1
2

(TK)2n
dx1

= 1 −
m−1∑
n=0

1

n!2n (TK)
2n

2n+1

√
2π

√
2

Γ
(
n+ 1

2

)
(
1 + 1

(TK)2

)n+ 1
2

= 1 −
m−1∑
n=0

TKΓ
(
n+ 1

2

)
n! ((TK)2 + 1)

n+ 1
2
√
π

= 1 −
m−1∑
n=0

TK (2n− 1)!!

2nn! ((TK)2 + 1)
n+ 1

2

where

n!! :=

⎧⎨
⎩

n× (n− 2) . . . 5 × 3 × 1 n > 0 odd
n× (n− 2) . . . 6 × 4 × 2 n > 0 even
1 n = −1, 0

Notice thatPf depends solely on the product TK. This means
that for a fixed P̄f we just have to make the product TK con-
stant (as in the experimental results reported in Fig. 1).

3.2. Hypothesis H1

Let us consider now hypothesis H1 and assume that φe =
φ1 + n, where the components of n are i.i.d. N (0, σ2

n). We
have eT

1 Dφe = ‖v‖2 + β‖w‖2 + n′1 where n′1 ∼ N (0, ‖v +
βw‖2σ2

n). On the other hand,

Dφe = (‖v + βw‖c1 + n′1, ‖v + βw‖Sc2 + n′2,

Kn′3, . . . ,Kn
′
k+2, 0, . . . , 0

)T (4)

where c21 + c22 = ‖v+w‖2 and n′i ∼ N (0, ‖v+βw‖2σ2
n) for

all i.
By assuming K >> max{1, s}, we can write ‖Dφe‖2=

K2
∑k+2

i=3 n
′
i
2 and eT

1 Dφe and ‖Dφe‖2 can be regarded as be-
ing approximately independent. Now the probability of cor-
rect detection Pd is

Pd = Pr

{(‖v‖2 + β‖w‖2 + n′1
)2
> T 2

(
K2

k+2∑
i=3

n′i
2

)}

If we assume ‖v + βw‖2 >> n′1, then we can make the
following simplification:

Pd = Pr
{(‖v‖2 + β‖w‖2

)2
+ 2

(‖v‖2 + β‖w‖2
)
n′1 >

> T 2K2
k+2∑
i=3

n′i
2

}

If n′′i =
n′i

‖v+βw‖σn
, then n′′i ∼ N (0, 1), for all i and we

can write

Pd = Pr

{
μz + σzn

′′
1 >

k+2∑
i=3

n′′i
2

}

where μz =
(‖v‖2+β‖w‖2)2

‖v+βw‖2σ2
nT 2K2 and σz =

2(‖v‖2+β‖w‖2)
‖v+βw‖σnT 2K2 . The

term s =
∑k+2

i=3 n
′′
i
2 is chi-squared distributed with k degrees

of freedom and pdf fS(s) = 1

2
k
2 Γ( k

2 )
s

k
2−1e−

s
2 s ≥ 0. If k =

2m, the cumulative distribution function becomes FS(s) =

1 − e−
s
2

∑m−1
i=0

1
i!

(
s
2

)i.
Finally,

Pd =
1√

2πσz

∫ ∞

0

FS(s)e
− (s−μz)2

2σ2
z ds

We will numerically solve this integral in the following ex-
perimental results.
Notice that we can rewrite both μz and σz in a way that

makes more explicit the dependence with the Document-to-
Watermark RatioDWR = ‖v‖2

‖w‖2 and theWatermark-to-Noise

RatioWNR = ‖w‖2
dσ2

n
(this also shows the dependence on d).

Namely, μz = (DWR+β)2WNR d

(DWR+β2)T 2K2 and σz =
2
√

μz

KT
.

3.3. Hypothesis H1 with the original as input

Let us calculate now the probability of deciding thatH1 holds
when the detector is given the original. The derivations are
almost identical to the previous case with the difference that
now eT

1 Dφe = ‖v‖2 + n′1 and c21 + c22 = ‖v‖2 in (4). The
probability of false positive when the detector is given the
noisy original P ′f is

P ′f = Pr

{(‖v‖2 + n′1
)2
> T 2

(
K2

k+2∑
i=3

n′i
2

)}

and assuming ‖v‖2 >> n′1 we have

P ′f = Pr

{
‖v‖4 + 2‖v‖2n′1 > T 2K2

k+2∑
i=3

n′i
2

}

If n′′i =
n′i

‖v+βw‖σn
, then n′′i ∼ N (0, 1) for all i and we

can write

P ′f = Pr

{
μz + σzn

′′
1 >

k+2∑
i=3

n′′i
2

}
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where μz = ‖v‖4
‖v+βw‖2σ2

nT 2K2 and σz = 2‖v‖2
‖v+βw‖σnT 2K2 .

Exactly as above, we finally obtain

μz =
(DWR)

2
WNR d

(DWR+ β2)T 2K2
, σz =

2
√
μz

KT

P ′f =
1√

2πσz

∫ ∞

0

FS(s)e
− (s−μz)2

2σ2
z ds
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Fig. 1. ROC curves for DNR = 30dB

4. CONCLUSIONS

Performance of the Newman-Pearson criterion can be eval-
uated through the ROC (Receiver Operating Characteristic)
curves, which plots Pd against Pf and against P ′f (see Fig. 1),
and depend on the Document-to-Noise Ratio (DNR) σ2

φe
/σ2

n.
In both cases β = 5000 and the product kd, which represents
the amount of information at the detector side, is kept con-
stant. Hence we see that we can reach an arbitrarily high de-
tection probability and simultaneously a false positive prob-
ability bounded under a fixed threshold, thus demonstrating
the effectiveness of our method.
Future work will be devoted to its statistical evaluation on

more realistic model of the host data.
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