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ABSTRACT

We present a constrained nonlinear optimization approach to
the estimation of hemodynamic response (HR) shape from
fMRI images. The controlled random search (CRS) based
strategy limits the HR parameters within a physically/physio-
logically plausible phase space, and thus may produce more
meaningful results than the traditional unconstrained meth-
ods. Block-design and event-related fMRI experiments have
been conducted to examine the validity of the framework.

Index Terms— hemodynamic response, controlled ran-
dom search, optimization

1. INTRODUCTION

There is an increasing interest in understanding the time course
of the hemodynamic response and its modulation with re-
spect to different experimental conditions. A common ap-
proach is based on a priori temporal knowledge of the event
sequence, such as a parametric model, and such knowledge is
fully used to detect the specific brain regions whose hemody-
namic evolution can be evaluated by mean of various statis-
tical approach [1, 2]. However, there are potential problems
raising from those statistical testing approaches. While a high
statistic confidence tells us that the model comes very close to
the data points, that does not necessarily mean that the fit is
actually good in other ways. This is because there is no guar-
antee that the best-fit values of the parameters obtained by the
statistic test will be meaningful in physics and/or physiology,
or simply because there is no intersection between a poor ex-
periment dataset, a poor model, or both [3].
To overcome these possible drawbacks, we argue that sta-

tistical inference about underlying patterns should be made
in a physically/physiologically plausible phase space, that is,
estimated parameters should possess maximum probability
within the domain of meaningful physical constraints. In par-
ticular, the HR parameter estimation can be converted into
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a constrained optimization problem, in which physical con-
straints need to be enforced when one searches for the min-
imum of a specified objective function. Furthermore, since
the hemodynamic response function (hrf) typically possesses
strong nonlinear characteristics, in which the effects of model
parameters on the output strongly interweave together, the
relevant optimization should be able to deal with nonlinear
multi-modal objective function.
Conventionally, direct, random search techniques have been

applied to multi-modal optimization problems by discretizing
the phase space. It is easy to show that the search accuracy
highly depends on the fineness of discretization and conver-
gence could be slow for satisfying results. The controlled ran-
dom search algorithms [4, 5] combine the random search and
mode-seeking routines into a single, continuous process, and
thereby provide a reasonable compromise between search ac-
curacy and convergence speed. Furthermore, since only very
limited measures are recorded for each fMRI trial, it is dif-
ficult to estimate complex models with many parameters for
conventional strategies. CRS algorithms have shown over-
whelming superiority in such situations [5].
As an initial effort to explore constrained nonlinear esti-

mation strategy of fMRI hemodynamic response parameters,
we have applied the controlled random search algorithm to
Gaussian HRmodels for block-design and event-related fMRI
experiments, in the hope that the estimates can offer the best
goodness of fit and are interpretable in terms of physiologi-
cal variables. With studies of more sophisticated HR models
underway, we believe that such methodology, which results in
compact, concise, and meaningful parametrizations of the HR
shapes, may give a better understanding for inter-trial, inter-
region and inter-individual differences in fMRI experiments.

2. METHODOLOGY

2.1. Gaussian Function Model

The BOLD responses, induced by experimental stimuli, have
been modeled by various HR functions which attempt to char-
acterize some features in the temporal aspects of the fMRI-
measured HR and provide an approximate to the time course
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of the fMRI signal. Some of the better known heuristic func-
tions for the hemodynamic response modeling include the
Poisson function, the Gamma function, the Gaussian func-
tion, and the balloon model which is a more comprehensive
biomechanical model of hemodynamic modulation [6, 7].
In the context of this paper, as an initial attempt, we con-

centrate on the Gaussian function for its relative simplicity:

h(t, β) = β0exp(−
(t − β2)

2

2β1
2

) + β3 (1)

with β = (β0, · · ·, β3). β0, being interpreted as the gain in
the hrf, is the height of the HR; β1, as the dispersion of the
hrf, is proportional to the duration of the HR; β2, the delay, is
the time from stimulation onset to the HR peak; and β3 is the
baseline of the hrf.
The Gaussian hrf can offer the best goodness of fit to

HR [7], and its model parameters are interpretable in terms
of physiological variables. However, the shape of the Gaus-
sain kernel, which is symmetrical around its peak, is not con-
firmed by experimental inspection of hrf. Furthermore, it also
neglects initial dip and the post-stimulus undershoot.

2.2. Objective Function

Statistical models usually contain two parts: the fixed effects
which capture the underline patterns (the hrf here) and the
random errors.
Let S be a set of L fMRI observations to a single experi-

mental trial in discrete time steps T, denote as S = {S(t), t ∈
T}. We explains the response variable S(t) in terms of a hrf
plus an error term:

S(t) = h(t, β) + ε (2)

where β denotes a n-dimensional parameter vector, and the
errors ε are independent and identically distributed normal
random variables with zero mean and variance σ2, written as
ε

iid
∼ N (0, σ2).
The least squares estimator β̂ of β is the value of β that

minimizes the sum of squared errors in

argmin
β

||S(t) − h(t, β)||2 (3)

This problem corresponds to determine the position, in n-
dimensional phase space, of a given objective function, that
is, it can be convert into solving an optimization problem.
Thus, the objective function can be defined as:

f(β) = ||S(t) − h(t, β)||2 (4)

where ||.||2 denotes the L2-norm of a vector. It is the L2-
norm of the difference between a measured data point and the
model expectant value summed over all points and time steps
in a trial. Furthermore, a constraint was imposed to limit the
search within the physical/physiological reasonable domain.

start

Generate the initial A from the predefined V

Determine the greatest and least points fh, fl

Choose randomly any n + 1 points
R1, R2, · · ·Rn+1 from A,

Determine trail point P = 2 × G − Rn+1

P ∈ V ?
no

Evaluate fP

fP < fh?
no

Replace h by P , in A

iteration number> 30, 000

or fh−fl
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no

end

yes

yes
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Fig. 1: The flowchart of the Price’s CRS algorithm approach.

Hence, a global optimization algorithm, which aims at
finding a global minimizer or its close approximation of a
function f : S ⊂ Rn → R, can be applied. When ∀ β ∈
S

⋂
[{β|C(β)}], where C(β) is physical constraints, ∃f =

f(β̂) ≤ f(β), we said point β̂ is a global minimizer of f .

2.3. Controlled Random Search Alogrithm

Controlled random search (CRS) algorithm was proposed as
an improvement to simple random search method [4, 5]. It
is an optimization algorithm suitable for searching of global
minimizers of objective function which does not require the
function to be differentiable or the variables to be continuous,
and is applicable in the presence of constraints.
The basic CRS idea for minimization can briefly be de-

scribed as follows

1. Generate the initial population A of N random points
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in predefined phase space V : A = {x1, ..., xN}. Com-
pute the function values of these points. Store these
points and corresponding function values in a array of
dimension N × (n + 1). Determine the greatest and
least values of the N points in store, and correspond-
ing the worst point h and the best point l. If a stopping
criterion is already satisfied then stop.

2. Generate a trial point p for replacing some x ∈ V .

3. If P /∈ V , go to step 2.

4. Evaluate fp = f(p). If fp > fh go to step 2.

5. Update the setA by replacing the current worst point by
the trial point. Determine the greatest and least function
values fh, fl, and corresponding the worst point h and
the best point l in new A.

6. If the stopping criterion is satisfied stop; else go to step
2.

Themain difference between various CRS versions is the gen-
eration of trial point P in step 2, and we have adopted the
simplex search scheme [4]. The trial point generation in step
2 is carried out as follows: chose randomly n + 1 distinct
points from the current populationA, R1, · · ·, Rn+1 (forming
a simplex in R

n). The point Rn+1 is arbitrarily taken as the
pole of the simplex, and the new trial point P is defined as the
reflection of the pole with respect to the centroidG of the the
remaining n points:

P = 2 × G − Rn+1 (5)

In this scheme, the appropriate choice of N is N = 25n,
and the convergence criterion is the total number of iteration
exceeds 50, 000 or (fh − fl)/(fh + fl) < 0.01. The essential
features of the algorithm shown as the flowchart in Fig. 1.

3. EXPERIMENTS

We have used two group fMRI data, one each for block-design
and event-related, to validate the effectiveness of the method.
Block-design: Totally 72 acquisitions were made (RT=7s),

in blocks of 6, giving 12 42-second blocks. The condition for
successive blocks alternated between rest and auditory stimu-
lation, starting with rest. Auditory stimulation was bi-syllabic
words presented binaurally at a rate of 60 per minute.
Event-related: 2 distinct texture photograph were pre-

sented in 2s for touch perception followed by a 14s rest, start-
ing with stimulus. Same 96 volumes were obtained (RT=2s),
in periods of 16s, giving 12 16-second circles.
We chose the largest activation blob as region of interest,

using the routine fMRI analysis of SPM2, and defined seed
cluster based on faces and edges, but not corners, so this voxel
had 18 neighbors. The final seed time series (show as blue bar

in Fig. 2) were extracted by averaging the time series of the
19 voxels.
Since parameters β1 and β2 are the dispersion and the de-

lay time of the HR model, they should be constrained to be
positive and within the length of a trial period. Furthermore,
β0 is the height of the HR, and should be less than the maxi-
mum difference between measured signal. β3 is the baseline
of HR, and thus should be less than the mean signal inten-
sity. In particular, combining all these requirements together,
inspection of fMRI time series reveals that the optimization
problems for block-design and event-related experiments can
be formulated as following:
Find a set of optimal model parameters β such that

min
β

f

subject to 0 ≤ β0 < 500; 0 ≤ β0 < 500;

0 ≤ β1 < 50; 0 ≤ β1 < 40;

0 ≤ β2 < 50; 0 ≤ β2 < 40;

2400 ≤ β3 ≤ 3400; 1450 ≤ β3 < 1650;

(block-design) (event-related)
∀β ∈ V.

4. RESULTS AND DISCUSSION

In Fig. 2 (a), we present observable responses obtained from
different trials in block-design experiment, the blue star sym-
bol denotes the raw data from the first trial. There are good fit
(see the 6th column in Tab. 1., F < F0.95(7, 10) for all trials)
between the HR signals (blue) and Gaussian model functions
(red). Fig.2 (b) present the representative fMRI time courses
obtained from the largest activation blobs and the fitted model
waveforms in event-related experiment.
It is a major advantage of using model functions that some

physiologically meaningful parameters, that is the temporal
properties of a HR to single trial, can be derived. Table 1.
shows the HR Gaussian model parameters of different trails
from the largest activation area of the block-design data. We
do not assign the baseline parameter β3 since it is regarded as
a trial-wise constant. The result shows that the time courses
of the evoked HR differed substantially, even within the same
subject and session. It may related to subject strategy changes
and attention shifts during the experiment [8].
Another advantage is on observation noise. Statistical

models usually contain two parts: the model response and the
random error. The classical optimization approach simply as-
sumes that the random error is spherically distributed [9]. Or
further, autoregressive model was also introduced to model
the noise temporal correlation by considering the influence
of random error of the preceding time points on that of the
current time point. However, the error source may be obser-
vation noise, but may also come from structural inaccuracy of
the model. The state-dependent noise depends on measured
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(a) Block-design

(b) Event-related

Fig. 2: (a) HR from the largest activation blob across dif-
ferent trials in block-design experiment, the blue star symbol
denotes the raw data from the first trial. (b) The time course
of HR (blue) to the first trial from the largest activation blob
and fitted Gaussian model (red) in event-related experiment.
Stimulus duration is shown as blue bar.

noise, and it is hard to require it to have a certain probabilistic
property such as independence or martingale property. The
CRS approach may relax the restrictions made on the noise
by constructing distinct objective function (e.g., L∞-norm
objective function), though we make spherically distributed
assumption on the observation noise in eq. 2.

Moreover, the proposed scheme can be applied to the eval-
uation of hemodynamic responses at every voxel, it may give
a better understanding about intertrial, interregion and interindi-
vidual differences in fMRI experiment. Combining with cor-
responding statistical strategy, it may serve as a valuable tool
for activation detection in functional neuroimaging studies.
Further studies are needed in more physiological plausible
HR model and establishing reasonable statistical strategy to
obtain activation detection over global brain.

trial β0 β1[s] β2[s]
minimizer F test
(fl) (10, 11df)a

1 211.45 17.86 22.94 185.22 3.77
2 211.17 13.66 21.58 214.73 4.37
3 164.79 20.22 22.31 136.18 3.42
4 183.66 17.19 25.66 186.79 4.49
5 211.18 15.94 18.30 178.89 3.29
6 140.04 14.86 16.49 208.89 6.34

Table 1: Gaussian model parameters for block-design HR to
different trail from the largest activation blob in SPM2.

aF0.95(10, 11) = 2.85.
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