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ABSTRACT
We propose a new model for event-related functional magnetic reso-
nance imaging (fMRI), and develop a new set of tools for activation
detection. A novel feature of our framework is the explicit model-
ing of the spatial correlation introduced by the scanner. We propose
simple, efficient algorithms to estimate model parameters. We de-
velop an activation detection algorithm which consists of two parts:
image restoration and least-squares estimation of the parameters of
the hemodynamic response function. During the image restoration
stage, a total-variation-based approach is employed to restore each
data slice, for each time index. The amplitude of the least-squares fit
of the hemodynamic response function is then thresholded to yield
an estimate of the activation map. We illustrate the promise of our
method through several experiments with synthetic data as well as
one example with real data.

Index Terms— Magnetic resonance imaging, parameter estima-
tion, detection, image restoration, modeling

1. INTRODUCTION

Functional magnetic resonance imaging (fMRI), a noninvasive tech-
nique to study functional brain anatomy, has been an active area of
research. During an fMRI experiment, a stimulus is presented to a
subject, and a sequence of several volumetric images of the brain
is taken. These images measure the concentration of oxygen in the
blood as a function of the location in the brain. Since blood oxygena-
tion levels are related to neuronal activity [11], accurate detection of
the regions of increased activity from fMRI data would allow estab-
lishing which areas of the brain are responsible for processing the
stimulus. However, since the fMRI measurement process results in
severe noise and other degradations, accurate detection of activation
regions is a challenging inverse problem. A paradigm that has been
frequently employed to address this problem in recent years is to pro-
pose a forward model and develop a statistical estimation method to
invert it [2, 4, 5, 6, 9, 10, 13].

In this paper, we focus on event-related fMRI which measures
the response to a single short stimulus or a sequence of such stimuli.
We develop a new activation detection algorithm. The input to our
algorithm is fMRI data, and the output for each pixel is the decision
which says whether or not the pixel is activated. Our algorithm has
two main novel features:

• Our forward model explicitly incorporates spatial blurring in-
troduced by the scanning process. We model this blurring as
a convolution with a spatially isotropic Gaussian kernel.
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• We use an image restoration algorithm based on constrained
minimization of the total variation (TV) [7]. TV-based image
restoration techniques [14] have been shown to reduce noise
while preserving image edges [15]. These methods have been
demonstrated to be robust to significant amounts of noise and
blurring, and to be especially well suited to the situations
where the image to be restored is piecewise constant. These
properties make such techniques ideally matched to our prob-
lem of producing a binary activation map based on very noisy,
blurred data.

We use the gamma-variate model [13] for the hemodynamic re-
sponse function (HRF) [8]. HRF models a pixel’s response when
stimulated by an ideal impulse. To capture the temporal correlation
of the data, we adopt the autoregressive noise model of [12]. We
develop computationally efficient procedures to estimate the param-
eters of this model. We model the spatial correlation of fMRI data
as the effect of a Gaussian blur. We develop a method to estimate
the width of the Gaussian kernel. Our activation detection algorithm
then consists of two main steps. First, we perform TV-based image
restoration frame by frame. Then we compute the least-squares fit
of the HRF and obtain the activation map by thresholding the am-
plitude parameters of the estimated HRF. Our proposed approach is
tested on simulated data and compared with two other approaches.
The performance is assessed using Receiver Operating Characteris-
tic (ROC) curves. We also illustrate our method on real data.

2. MODEL FORMULATION

Real fMRI data is 4D: It has three spatial dimensions and one tem-
poral dimension. However, for notational convenience as well as for
the ease and speed of our implementations and experiments, we as-
sume 3D data yi,j,t where i and j index two spatial dimensions, and
t is a discrete time parameter.

We assume that, if stimulated with an ideal impulse, the pixel
(i, j) produces the following response for time t ≥ 0:

hi,j,t =

8<
: xi,j

„
t− δi,j

τi,j

«2

e
−

t−δi,j
τi,j t ≥ δi,j ,

0 t < δi,j ,

(1)

where the parameters xi,j , δi,j , and τi,j have the following interpre-
tations:

• δi,j is the delay between the presentation of the stimulus and
the onset of the response;

• 2τi,j is the time from the onset of the response to its peak;
• 4xi,j/e2 is the peak amplitude of the response.
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This impulse response is also commonly referred to as the hemody-
namic response function (HRF). The form of HRF used in Eq. (1)
is taken from [3, 13]. Note that, if pixel (i, j) is not activated, then
xi,j = 0. Our approach to detect activation is therefore to estimate
the amplitude parameter xi,j for each pixel’s HRF, and threshold it.
Activation is detected at pixel (i, j) if xi,j is above a threshold.

Each pixel’s hemodynamic response is subject to physiological
noise ωi,j,t, i.e., noise arising due to the subject’s heartbeat, breath-
ing, etc. We model this noise as an additive AR(1) process, follow-
ing [12]. In other words, the physiological noise is modeled as the
output of the following linear system driven by white noise εi,j,t:

ωi,j,t = ρωi,j,t−1 + εi,j,t. (2)

We assume that the white noise εi,j,t is zero-mean. The parameters
of this model are therefore ρ (which we assume to be a real number
between 0 and 1) and the standard deviation σε of the noise εi,j,t.
We assume each of these parameters to be the same for all pixels
and all times.

In addition, it is common to assume the presence of an additive
baseline m, which is the signal level when no stimulus is presented
[8]. However, we assume that an accurate estimate of the baseline
may be obtained by averaging the response values measured when
no stimulus is applied. This estimate can then be subtracted from
the data. Therefore, in the remainder of the paper we assume zero
baseline.

The sum hi,j,t + ωi,j,t of the the HRF and the physiological
noise is subject to two further types of degradation introduced by
the scanner: spatial blurring and noise. We model the former as the
convolution with a spatially isotropic Gaussian kernel gi,j with zero
mean and standard deviation σ. We model scanner noise as additive
white noise ηi,j,t with zero mean and standard deviation ση which
is assumed to be a constant both spatially and temporally. Putting all
the pieces of our model together results in the following:

yi,j,t =
X

k

X
l

gk,l(hi−k,j−l,t + ωi−k,j−l,t) + ηi,j,t. (3)

3. ACTIVATION DETECTION

Our activation detection algorithm first estimates the HRF hi,j,t from
the data yi,j,t, and then estimates the amplitude parameters xi,j of
the estimated HRF. The activation map is obtained through thresh-
olding xi,j . The remainder of this section describes the estimation
algorithm. This algorithm relies on the estimates of the following
model parameters: the standard deviation σ of the Gaussian blurring
kernel, the physiological noise parameters ρ and σε, and the scanner
noise parameter ση . The procedures for estimating these parameters
are developed in the next section.

The first part of our activation detection algorithm is accom-
plished through a total-variation (TV) based restoration algorithm
[14] which is applied frame by frame—in other words, the data
{yi,j,t}i,j is restored for each fixed value of t. We therefore drop
the t index for notational convenience. We denote the combined
contribution of the physiological and scanner noise to pixel (i, j) in
Eq. (3) by vi,j :

vi,j ≡
X

k

X
l

gk,lωi−k,j−l + ηi,j .

With this notation, our model of Eq. (3) can be rewritten as follows:

yi,j =
X

k

X
l

gk,lhi−k,j−l + vi,j . (4)

We formulate the following constrained total variation minimization
problem, where we assume that our images are N ×N :

min
{hi,j}

X
i

X
j

p
(hi+1,j − hi,j)2 + (hi,j+1 − hi,j)2

subject to Eq. (4) (5)

and 1

N2

X
i

X
j

v2
i,j ≤ σ2

v.

We follow [7] and use second-order cone programming (SOCP) to
solve this optimization problem. Our SOCP is almost identical to
that in [7], with the exception of the additional blurring term in
the constraint of Eq. (4). This SOCP is solved using interior point
method through MOSEK software [1]. The constraint parameter σ2

v

is an estimate of the total noise variance, which can be obtained as
follows:

σ2
v =

X
l

X
k

g2
k,l

σ2
ε

1− ρ2
+ σ2

η. (6)

The next section shows how to estimate all the parameters used in
the right-hand side of this equation.

The result of performing the above optimization for every time
t, is a set of estimates of HRF, at every pixel location, and for ev-
ery time t. We denote these estimates by ĥi,j,t. The second stage
of our activation detection algorithm uses ĥi,j,t in conjunction with
the HRF model of Eq. (1) to produce least-squares estimates of the
parameters xi,j , τi,j , and δi,j . We then classify each pixel whose pa-
rameter xi,j is above a threshold as activated, and each pixel whose
parameter xi,j is below the same threshold as non-activated.

4. PARAMETER ESTIMATION

We estimate the parameters from the fMRI data corresponding to
the initial time interval of the experiment, when the subject is not
presented with any stimulus. We let T be the duration of this interval.
This results in the following simplified version of Eq. (3) for t =
1, . . . , T :

yi,j,t =
X

k

X
l

gk,lωi−k,j−l,t + ηi,j,t. (7)

We use these observations to estimate the model parameters: the
standard deviation σ of the Gaussian blurring kernel, the physio-
logical noise parameters ρ and σε, and the scanner noise param-
eter ση . We rasterize the data and the three noise processes, for
each time t, to define four vectors yt, ωt, εt, and ηt. For ex-
ample, yt = (y1,1,t . . . y1,N,t y2,1,t . . . y2,N,t . . . yN,N,t)

′ for
t = 1, . . . , T , where the prime denotes the transpose of a vector. We
let A be the Gaussian filtering matrix—i.e., the matrix representing
the convolution with the spatial Gaussian blurring kernel. Using this
notation, Eqs. (2) and (7) can be rewritten, respectively, as follows:

ωt = ρωt−1 + εt

yt = Aωt + ηt

Our algorithm for estimating the noise parameters ρ, σε and ση is
based on their relationships with the autocorrelation function of yt

which can be easily demonstrated:

E[yT
t yt] =

σ2
ε

1− ρ2
trace{AA′}+ N2σ2

η (8)

E[yT
t yt−1] =

ρ

1− ρ2
σ2

ε trace{AA′} (9)

E[yT
t yt−2] =

ρ2

1− ρ2
σ2

ε trace{AA′} (10)

V - 506



We denote r � E[yT
t yt], r1 � E[yT

t yt−1], r2 � E[yT
t yt−2]. We

use the following standard estimates of the autocorrelations r, r1,
and r2:

r̂ =
1

T

TX
t=1

NX
i=1

NX
j=1

y2
i,j,t (11)

r̂1 =
1

T − 1

TX
t=2

NX
i=1

NX
j=1

yi,j,tyi,j,t−1 (12)

r̂2 =
1

T − 2

TX
t=3

NX
i=1

NX
j=1

yi,j,tyi,j,t−2 (13)

If we let the i-th row of A be ai, then trace{AA′} = N2‖ai‖
2
2.

Note that ‖ai‖
2
2 is the same for all rows and is only a function of

σ. We denote this function by α(σ). Substituting the estimates of
Eqs. (11-13) into Eqs. (8-10), replacing trace{AA′} with N2α(σ),
and solving for the noise parameters, we get the following estimates
of the noise parameters:

ρ̂ = r̂2/r̂1 (14)

σ̂ε =

s
r̂1(1− ρ̂2)

ρ̂ N2α(σ)
(15)

σ̂η =

r
r̂ − r̂1/ρ̂

N2
(16)

We conclude this section by showing how to estimate the param-
eter σ which is needed both in order to compute an estimate of σε via
Eq. (15), and in order to estimate the blurring kernel in the constraint
of Eq. (4) and the constraint parameter σ2

v of Eq. (6). The estimation
of σ is based on its relationship with the covariance between yi,j,t

and yi,j+1,t. Since we are observing non-activated pixels, the means
of yi,j,t and yi,j+1,t are 0. Thus the covariance between yi,j,t and
yi,j+1,t is equal to E[yi,j,tyi,j+1,t]. In addition, since the observa-
tions are time-stationary, E[yi,j,tyi,j+1,t] is independent of time t.
We therefore drop the index t for notational convenience. It can be
easily shown that:

E[yi,jyi,j+1] =
σ2

ε 〈ai, ai+1〉

1− ρ2
. (17)

Note that 〈ai, ai+1〉 is a function of σ but not a function of i. We de-
note this function by β(σ). We use the following standard estimate
of E[yi,jyi,j+1]:

E[yi,jyi,j+1] =
1

N2T

X
t

X
i

X
j

yi,j,tyi,j+1,t.

Substituting the estimates of E[yi,jyi,j+1], σε, and ρ into Eq. (17),
we have the following result:

1

N2T

X
t

X
i

X
j

yi,j,tyi,j+1,t =
r̂1β(σ)

ρ̂N2α(σ)
. (18)

By solving Eq. (18) for σ, we obtain the estimate of the smoothness
of the image, i.e., the width of the Gaussian kernel.

5. EXPERIMENTAL RESULTS

We conduct an experiment to test the performance of the proposed
activation detection approach on synthetic data and compare it with
two other approaches.

Our synthetic dataset is 64 × 64 × 15, representing 64 × 64
2D images collected at each of the 15 time points. The dataset is
simulated using our model of Eqs. (1,2,3). The correct parameters
of the HRF (see Eq. (1)) are τi,j = 2, δi,j = 1.5, and xi,j = 0.03
for activated pixels which occupy a 4 × 4 rectangular region of the
64× 64 image. Note that our algorithm does not know these values,
and does not even know the fact that they are independent of i and j.

We define the PSNR as 20 log10(p/σv) where p = 0.0162 is
the peak amplitude of the HRF for every activated pixel, and σv is
the standard deviation of the noise from Eq. (6). To conduct experi-
ments with various levels of PSNR, we fix the ratio σ2

ε /σ2
η = 7/16

and increase both σε and ση proportionally to decrease the PSNR.
Specifically, we use four PSNR values: 20.5, 14.5, 11.8, 8.3. These
values are unknown to our algorithm. The two remaining noise pa-
rameter values, also unknown to our algorithm, are σ = 0.569 and
ρ = 0.75 in all experiments. For each of the four distinct param-
eter settings, we perform a Monte-Carlo run consisting of 100 sim-
ulations, and generate an empirical receiver operating characteristic
(ROC). We also generate ROCs for two other activation detection
approaches for comparison.

To demonstrate the added value of the restoration stage, we com-
pare our algorithm to its simplified version where the restoration
stage is omitted. In other words, the benchmark algorithm performs
the least-squares fit of HRF based on raw data.

We also compare our method to the paired t-test method which
has been used in literature as a benchmark [13]. This method as-
sumes that that all activated pixels have the same HRF, and has the
knowledge of the correct parameters of this HRF, including the am-
plitude. This correct HRF is used as the reference in the pixel-by-
pixel paired t-test. Note that the knowledge of the correct HRF pa-
rameters is critical, and is available to this method but not to ours.
The objective of this exercise is to compare our method with a much
simpler method which, however, has much more information avail-
able to it.

The correct detection rate is plotted against the false alarm rate in
Fig. 1 for four different PSNR values for our proposed approach and
two other methods described above. Error bars indicate ± twice the
standard deviation of the correct detection rate in 100 Monte-Carlo
simulations. Note that our method is statistically indistinguishable
from the t-test which uses the knowledge of the correct parameters
of the HRF. In addition, our full method clearly outperforms its no-
restoration version. For example, for PSNR = 11.8 and false alarm
rate under 0.03, our full method achieves more than twice the correct
detection rate of the method without the restoration stage. At the
same level of PSNR, the full version of the algorithm needs 0.08
false alarm rate to achieve perfect correct detection rate, whereas the
no-restoration version achieves perfect detection only at about 0.24
false alarms. Also note that for PSNR = 20.5, the ROC curve for our
full method goes through the point with zero false alarms and 100%
correct detections (see Fig. 1(a)). Finally, note that our full method
degrades gracefully, even for quite low levels of PSNR.

In Fig. 2 we show an example of applying our algorithm to
real data. In this experiment, the subject is presented with a visual
checkerboard stimulus to the right hemifield. From the figure, we
can see that the region of the detected activation is in the correspond-
ing primary visual cortex.

6. CONCLUSION

We have proposed a new forward model for event-related fMRI which
explicitly incorporates the effect of blurring introduced by the scan-
ner. We have developed a new activation detection algorithm which
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(a) ROC curves when PSNR is 20.5.

0 0.2 0.4 0.6 0.8 10

0.2

0.4

0.6

0.8

1

false alarm rate

co
rr

ec
t d

et
ec

tio
n 

ra
te

proposed
t−test
no restoration

(b) ROC curves when PSNR is 14.5.
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(c) ROC curves when PSNR is 11.8.
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(d) ROC curves when PSNR is 8.3.

Fig. 1. Thick solid lines denote ROC curves for our proposed
method. Dashed lines denote ROC curves for the t-test method.
Thin solid lines denote ROC curves for the method of fitting without
restoration. Error bars on each line indicate± twice the standard de-
viation of the correct detection rates for the corresponding method.

Fig. 2. Activation map of our proposed detection algorithm over-
layed on top of anatomical image for a visual checkerboard stimulus
presented to the right hemifield.

uses a total variation minimization algorithm to restore image data.
We have also proposed novel ways of estimating model parameters.
Our experimental examples showed that our method outperforms
two benchmark methods on synthetic data. It also performs well in
an example with real data. This illustrates the promise of our model
and algorithm.
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