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ABSTRACT

Segmentation of medical ultrasound images (e.g., for the purpose
of surgical or radiotherapy planning) is known to be a difficult task
due to the relatively low resolution and reduced contrast of the im-
ages, as well as due to the discontinuity and uncertainty of segmen-
tation boundaries caused by speckle noise. Under such conditions,
useful segmentation results seem to be only achievable by means
of relatively complex algorithms, which are usually computationally
involved and/or require a prior learning. In this paper, a different
approach to the problem of segmentation of medical ultrasound im-
ages is proposed. In particular, we propose to preprocess the images
before they are subjected to a segmentation procedure. The proposed
preprocessing modifies the images (without affecting their anatomic
contents) so that the resulting images can be effectively segmented
by relatively simple and computationally efficient means. The per-
formance of the proposed method is tested in a series of both in silico
and in vivo experiments.

Index Terms— Image segmentation, morphological signal pro-
cessing, decorrelation, active contours, and medical ultrasound.

1. INTRODUCTION

Medical ultrasound imaging is currently considered to be on the
leading edge in non-invasive medical imaging. Its cost-benefit ra-
tio in terms of accessibility, portability, and safety far exceeds that
of alternative technologies such as X-ray CT and MRI. The clinical
use of medical ultrasound imaging has long expanded beyond the
simple visualization and inspection of anatomic structures. Surgical
and radiotherapy planning, intra-operative navigation, and tracking
the progress of disease are nowadays among the standard applica-
tions of this imaging modality.

All the aforementioned applications of medical ultrasound in-
volve the procedure of segmentation of ultrasound images. Although
modern ultrasound scanners are capable of providing fairly good
views of internal anatomy, the use of automatic segmentation tech-
niques for accurately quantifying and analyzing the embedded struc-
tures seems to be limited. The relatively low resolution and reduced
contrast of ultrasound images along with the discontinuity and un-
certainty of segmentation boundaries caused by speckle noise are
among the main reasons that make the task of segmenting ultrasound
images difficult to carry out.

A multitude of methods for segmentation of ultrasound images
have been proposed hitherto, most of which take advantage of de-
formable models [1]. Thus, for example, in [2] the shape of human
prostate is described by a discrete model represented by a finite set
of vertices and corresponding facets. Subsequently, the model is
evolved under internal (elastic) and external (image-related) forces,

and the evolution is terminated when the model “locks on” the local
maxima of image gradient, which are presumed to be related to the
prostate boundary. In [3], the performance of a similar segmenta-
tion approach is improved via incorporation of a priori information
on possible shapes of the prostate. In this case, the model is de-
scribed by a linear combination of the principal components of pro-
static shapes which have been depicted by a radiologist beforehand.
Apart from the necessity of prior learning, this method (as well as
the previous one) seems to have the disadvantage of being depen-
dent on the information contained in image edges, which are known
to be unreliable features to use in ultrasound imagery. This fact was
addressed in [4], where the segmentation method discriminates the
prostatic tissue based on texture-related features via a classification
procedure.

The watershed transformation was applied to the problem of seg-
menting ovarian ultrasound images in [5]. Although demonstrating
reliable performance in detecting the shape of follicles, it seems to
be impossible for the method to be extended to other organs, as it is
based on the assumption that the follicle interior regions should be
noticeably darker than the rest of the ultrasound image area.

In [6], the problem of segmentation of intravascular ultrasound
images is addressed via introducing a knowledge-based approach,
which incorporates a number of explicit constrains stemming from
the known anatomy of blood vessels and their associated geome-
try. On contrary, no a priori geometric assumptions are used in the
method of [7], where the three-dimensional shapes of blood vessels
are represented by active surfaces. However, this method requires
the boundaries of internal and external laminas to be well observ-
able.

Deformable models have also proven useful in the field of car-
diac elastography. Thus, for example, in [8], echocardiograms are
segmented based on active appearance motion models, which are
capable of accounting for both shape and intensity variations of my-
ocardium during the cardiac cycle. The technique of active contours
was used in [9] for left ventricular segmentation. As opposed to [8],
this methods does not involve a training stage. However, it also
seems to be useful for segmenting the object of interest with well
observable boundaries.

The present study demonstrates that the performance of segmen-
tation algorithms can be substantially improved via applying the lat-
ter to preprocessed rather than original images. In particular, the
proposed method segments ultrasound images in the logarithmic do-
main, after the images have been subjected to the processes of decor-
relation and outlier shrinkage. It is shown that this preprocessing is
capable of considerably improving the separability of segmentation
classes, thereby increasing the accuracy of resulting segmentation.
The method by means of which the segmentation is performed is
based on the technique of active contours. In particular, we adopt the
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region-based formulation of active contours as introduced in [10],
which seems to be advantageous in the situations, when objects of
interest have poorly observable boundaries due to, e.g., dropouts
and/or shadowing artifacts.

2. IMAGE FORMATION MODEL

Under the assumption of linear wave propagation and weak scatter-
ing, the backscattered signal and the tissue reflectivity function are
known to obey a simple Fourier transform relationship with respect
to each other. In this case, a radio-frequency (RF) image is con-
sidered to be result of the convolution of the point-spread function
(PSF) of the imaging system with the tissue reflectivity function.
Denoting by g(n, m), f(n, m), and h(n, m) the RF-image, the tis-
sue reflectivity function, and the PSF, respectively, the convolution
model is formally given by:

g(n, m) = f(n, m) ∗ h(n, m) + u(n, m), (1)

where n and m denote the axial and lateral (or radial and angular,
for B-scan sector images) indices of the image samples. The term
u(n, m) is added to describe measurement noises as well as all the
physical phenomena, which are not accounted for by the convolution
model.

Due to the natural intricacy of most biological tissues and the
fact that tissue heterogeneity is generally formed by numerous small
“independent” structures, the samples of the reflectivity function can
be assumed to be uncorrelated. Moreover, these samples are likely
to be independent of noise, which can be reasonably assumed to be
Gaussian and white. In this case, the power density Pg(ω1, ω2) of
the RF-image can be shown to be given by:

Pg(ω1, ω2) = σ2
f |H(ω1, ω2)|2 + σ2

u, (2)

where H(ω1, ω2) is the Fourier transform of the PSF h(n, m), while
σ2

f and σ2
u denote the variances of the reflectivity function and noise,

respectively.
From (2), it is clear that the correlation properties of ultrasound

images are defined by the form of the PSF, which is typically a band-
limited function. It goes without saying that these correlation prop-
erties have to be taken into account, while designing a segmentation
algorithm. Alternatively, one can try to find an operator that can
transform a received RF-image into another RF-image, whose sam-
ples correlate less than those of the original. Such an operator can
be defined as a linear filter l(n, m), whose transfer function is given
by [11]:

L(ω1, ω2) =
1q

|H(ω1, ω2)|2 + σ2
u/σ2

f

. (3)

Applying (3) to an RF-image results in “flattening” its power spec-
trum and, therefore, reduces the correlation between the RF-image
samples. The constant λ = σ2

u/σ2
f can be thought of as a tunable

parameter which can be set empirically, so that its optimal value
would result in maximal decorrelation, while avoiding undesirable
artifacts caused by over-amplification of high frequencies. In order
to implement the spectrum equalization using the filter (3), the power
spectrum of the PSF needs to be estimated. In the current study, the
estimation is performed using the method described in [11, Section
C].

The decorrelation of RF-images constitutes the first stage of the
proposed preprocessing. After this stage is completed, the (decorre-
lated) RF-images are subjected to the standard process of frequency
demodulation and envelope detection. Subsequently, the second pre-
processing stage is applied to the resulting envelope images.

3. SPECKLE NOISE AND OUTLIER SHRINKAGE

A coherent nature of the formation of ultrasound images causes the
latter to be severely contaminated by speckle noise. Thus, before de-
riving any segmentation procedure, the properties of the noise should
be carefully analyzed. In ultrasound imaging, however, a universally
agreed upon definition of a model for speckle noise still seems to
be lacking. One of the most frequently used models (whose feasi-
bility has been verified via its extensive practical use) represents the
noise as a multiplicative process. Specifically, the observed envelope
image p(n, m) is modeled as:

p(n, m) � d(n, m) ξ(n, m), (4)

where d(n, m) is the true image and ξ(n, m) is the speckle noise.

Working with multiplicative noises is generally considered to be
more difficult than the additive noise case. Thus, in order to con-
vert ξ(n, m) into an additive noise, homomorphic processing can be
used that takes advantage of the logarithmic transformation applied
to both parts of (4). Denoting the logarithms of p(n, m), d(n, m),
and ξ(n, m) by pl(n, m), dl(n, m), and ξl(n, m), respectively, the
measurement model in the log-transform domain becomes:

pl(n, m) � dl(n, m) + ξl(n, m). (5)

Let us assume, for the moment, that the samples of the reflectiv-
ity function behave as realizations of a zero-mean, white Gaussian
noise of variance σ2

f . In this case, it is straightforward to show that
the samples of ξ(n, m) obey a Rayleigh distribution, and, conse-
quently, the log-transformed speckle noise ξl(n, m) is distributed
according to the Fisher-Tippett probability density given by:

P (x) = 2 exp
˘
(2x− log 2σ2

f )− exp
˘
2x− log 2σ2

f

¯¯
. (6)

It is interesting to note that the Fisher-Tippett distribution possesses
an approximant in the form of a Gaussian density. The latter is ob-
tained by replacing the inner exponent in (6) by the first three terms
of its Taylor series expansion, resulting in:

P (x) � 2e−1 exp

(
−1

2

„
x− log

√
2σf

0.5

«2
)

. (7)

An interesting fact about the approximation above is that it has
a constant variance of 0.25, implying that the additive noise in (5)
may be roughly viewed as white Gaussian with a fixed variance.
Moreover, the variance σ2

f of the underlying reflectivity function
defines the mean value of the distribution. This implies that the
biological tissues represented by reflectivity functions of different
variances can be discriminated based on their mean intensity in the
log-trasnform domain of corresponding envelope images. Note that
the reasonability of such a representation of biological tissues was
recently advocated in [12].

Unfortunately, the approximation (7) is acceptable only in close
proximity of the mean value of the original pdf (6). Moreover, as
compared to the Gaussian, the pdf of the Fisher-Tippett distribution
is asymmetric and leptokurtic. As a result, a noise “produced” by the
Fisher-Tipett distribution may be viewed as a white Gaussian noise
contaminated by occasional transients or outliers. Unfortunately, the
latter can significantly bias estimating the mean value of the Gaus-
sian approximation (7).

The above difficulty can be overcome via “gaussianization” of
ξl(n, m) that consists of estimating and subsequently subtracting its
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Fig. 1. (Left) Original template; (Center) Simulated envelope at -12
dB contrast; (Right) Simulated envelope at -6 dB contrast.

spiky component. The latter can be estimated as robust residuals of
pl(n, m) computed according to:

r(n, m) = sign (Δpl(n, m)) (|Δpl(n, m)| − λ)+ . (8)

Here Δpl(n, m) denotes difference between pl(n, m) and its median-
filtered version, λ is a predefined threshold, and the operator (x)+
returns x if x > 0 and zero otherwise. It was observed in [11] that in
most cases, the robust residuals r(n, m) correspond to the outliers
of the spiky noise, when the size of the median filter is set to be 3×3
(or 5 × 5) and the threshold λ is set to a level such that 93-95% of
the differences |Δpl(n, m)| do not exceed the predefined threshold.
In this case, subtracting r(n, m) from pl(n, m) results in suppress-
ing the spiky component of the Fisher-Tippett noise. Moreover, the
noise contaminating the difference signal pl(n, m) − r(n, m) be-
haves very similarly to white Gaussian noise, while dl(n, m) re-
mains practically unchanged.

Rejecting the outliers of the log-transfromed speckle noise con-
stitutes the second and the last stage of the proposed preprocessing.
Note that, though the consideration above relied on the assumption
that the samples of f(n, m) are Gaussian distributed, it can be shown
that (8) can be effectively used for “gaussianization” of more general
types of noises [11].

4. SEGMENTATION BY ACTIVE CONTOURS

In order to facilitate the discussion, we confine the derivations below
to the case of two classes and use a continuous rather than discrete
formulation. In this case, the segmentation problem is reduced to
the problem of partitioning the domain of definition Ω ⊂ R

2 of an
image p(z) (with z ∈ Ω) into two mutually exclusive and comple-
mentary subsets Ω− and Ω+. These subsets can be represented by
their respective characteristic functions χ− and χ+, which can, in
turn, be defined by means of a level-set function φ(z) : Ω → R in
the following manner. Let H be the Heaviside function defined in
the standard way as:

H(z) =

j
1 if z ≥ 0;
0 if z < 0.

(9)

Then, one can define χ−(z) = H(−φ(z)) and χ+(z) = H(φ(z)),
with z ∈ Ω.

Given a level-set function φ(z), its zero level set {z | φ(z) ≡
0, z ∈ Ω} is used to implicitly represent a curve – active contour
– embedded into Ω. For the sake of concreteness, we associate the
subset Ω− with the support of the object of interest, while Ω+ is
associated with the support of corresponding background. In this
case, the objective of active-contour-based image segmentation is,
given an initialization φ0(z), to construct a convergent sequence of
level-set functions {φt(z)}t>0 (with φt(z)|t=0 = φ0(z)) such that

Fig. 2. (A1-A3) Segmentation of the original, log-, and preprocessed
envelopes at -12 dB constrast; (B1-B3) Segmentation of the original,
log-, and preprocessed envelopes at -6 dB constrast.

the zero level-set of φ∞(z) coincides with the boundary of the object
of interest.

The above sequence of level-set functions can be constructed us-
ing the variational framework. In particular, in the current study, the
optimal level set function is found as a minimizer of the following
functional:

E(φ(z), c−, c+) =

Z
Ω

|p(z)− c−|H(−φ(z)) dz+ (10)

+

Z
Ω

|p(z)− c+|H(φ(z)) dz + α

Z
Ω

‖ �H(φ(z))‖ dz.

In (10), the first two terms penalize the deviation of the image values
from the mean intensities c− and c+ inside and outside of the active
contour, respectively. At the same time, the last terms controls the
smoothness of the active contour, and hence α > 0 can be viewed as
a regularization parameter.

The convergent sequence {φt(z)}t>0 is obtained as a gradient
flow stemming from minimization of (10) as detailed in [10] mutatis
mutandis. Note that the functional given by (10) can be thought of
as a robust version of the functional minimized in [10].

5. EXPERIMENTAL RESULTS

The experimental study presented in this paper consists of two parts.
In the first part, we tested the performance of the proposed segmenta-
tion method under controllable conditions using simulated data sets.
The latter were generated using the “tissue” structure shown in the
left subplot of Fig. 1, where the white region can be thought of as,
e.g., a cyst, while the black region represents surrounding tissue.
The ratio between the variances of the reflectivity functions corre-
sponding to the “cyst” and the background were set to be equal to
0.25 and 0.5, thereby resulting in envelope images with the contrast
ratios of -12 dB and -6 dB, respectively. The central and right sub-
plots of Fig. 1 show two examples of the simulated envelopes com-
puted using the Field II R© package for different contrasts. Note that
segmentation is expected to reconstruct the boundary of the “cyst”
region from corresponding RF-image.

To demonstrate the usefulness of the proposed preprocessing,
the active-countor-based segmentation of Section 4 was applied to
the original envelopes, their log-transformed versions, and to the pre-
processed envelopes. Subplots A1-A2 of Fig. 2 show realizations of
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Table 1. NMSE of segmentation of different types of envelope im-
ages

Original Logarithmic Preprocessed

-12 dB 0.19 0.16 0.07

-6 dB 0.31 0.28 0.17

Fig. 3. (Top) Original image of IVC; (Left) Segmentation of the log-
envelope; (Right) Segmentation of the preprocessed envelope.

the above envelopes along with the final active contours for the case
of -12 dB contrast. The results obtained for the case of -6 dB con-
trast are exemplified in Subplots B1-B3 of the same figure. One can
see that, in comparison with the original and log-transformed en-
velopes, the preprocessed images have noticeably better resolution
and higher contrast. Consequently, segmenting the preprocessed im-
ages results in much more accurate estimation of the “cyst” geome-
try, even when the “cyst” is virtually indistinguishable (see Subplots
B1-B3 of Fig. 2).

In order to quantitatively compare the segmentation results, the
normalized mean-squared error (NMSE) was used, which is defined
as NMSE = E ˘‖p0 − pe‖2F/‖p0‖2F

¯
, where p0 and pe denote an

original image and its estimate, and the subscript F stands for the
Frobenius norm. The NMSE obtained in the simulation study are
summarized in Table 1 for different types of the envelopes and con-
trast ratios. One can see that the preprocessing results in a substantial
reduction of the NMSE values.

During the second stage of the experimental study, the proposed
segmentation method was evaluated using in vivo data. The data
were recorded from adult volunteers with a VIVID-3 scanner (GE
Medical Systems, Inc.) using a 4 MHz, curved-array probe.

The upper subplot of Fig. 3 shows in vivo ultrasound image of
a fragment of inferior vena cava (IVC). One can see that the vessel
boundaries are discontinuous and poorly observable due to contrast
variations and low resolution. For these reasons, segmenting the log-
envelope image, as demonstrated by the leftmost subplot of Fig. 3,
results in a far-from-perfect reconstruction of the geometry of the
IVC. On the other hand, the vessel geometry is virtually perfectly
reconstructed by segmenting the corresponding preprocessed image,
as shown in the rightmost subplot of the same figure. In general, it
was observed that the segmentation of preprocessed images agreed
with the manual segmentation performed by a radiologist within 8%
error bounds, while for the unprocessed images this error was about
21%.

6. CONCLUSIONS

In this paper, a novel approach to the problem of segmentation of
medical ultrasound images has been proposed. It is proven conceptu-
ally and experimentally, that the performance of image segmentation
can be substantially improved via properly preprocessing the images
to be segmented. A distinctive feature of the proposed preprocessing
lies in the fact that it allows substantially improving the separability
of segmentation classes without affecting the contents of the images
being segmented. This feature makes it possible for the preprocess-
ing to be used in combination with a variety of segmentation tools.
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