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ABSTRACT

We propose to use particle filter [1], along with active 
contour [2] to track and model the plus-end tips of
microtubules in confocal microscopy. Microtubules are
polymers that change between states of growth, shortening, 
and pause. These events are critical to many cellular
functions and are targets for successful cancer
chemotherapy agents like Taxol. However, analyses are
performed manually by researchers in most cases. Hence 
there is a need for a rapid and efficient quantification 
algorithm. In this paper, we propose to uses particle filter to 
track microtubule dynamics. While there are other algorithms 
that track microtubule movements, none of them uses inter-
frame information. In our system, we use an open active
contour to segment individual microtubule in each frame.
Particle filter is used to track microtubule movements using
information from previous frame. A simple motion and 
observation model is used to model the motion of
microtubule movement. We show some of the results using 
MCF-7 breast cancer cell lines captured using fluorescent
confocal microscopy and conclude that adding particle filter 
improves the accuracy of the system.

Index Terms— Microtubule Dynamics, Particle Filter, Active 
Contour, Image Segmentation, Confocal Microscopy

1. INTRODUCTION

The advance of fluorescent microscopy technologies creates 
a new field for image processing on molecular level. New
molecular imaging modalities allow rapid acquisition of
dynamics cellular processes with high spatial and temporal 
resolution.  These systems can generate large data set for a 
small experiment, and create a needed for quantitative and 
qualitative analyses which current commercial image
analysis software cannot fulfill. Here image processing and 

signal processing techniques can be applied to create a 
specialized perform to automate the analysis process.
In this paper, we are interested in investigation microtubule 
dynamics, which refers to the stochastic nature of
microtubule movement. Microtubules are tubulin polymers 
that transition between events of slow growth, rapid
shortening, and pause. These events are the result of
addition or removal of tubulin. The dynamicity plays
important role in cell division and hence they are excellent 
targets for cancer drugs like paclitaxel.

There are very few algorithms developed to quantify 
microtubule dynamics. None of them uses temporal
information to model and track the tips of microtubules. 
Saban [3] proposes to use Gaussian kernels to reveal dark 
microtubules in light backgrounds. Tracking is done using 
local search window of segmentation result from the
previous frame. In [4], microtubule images are enhanced 
using anisotropic invariant wavelet filtering, three
dimensional tube-enhancing, and surface-enhancing filter. 
Segmentation is done using active shape model. Plus-end
tracing is done using a particle filter but it is used to trace 
microtubule structure instead of its dynamics.
Hadjidemetriou [5] preprocesses microtubule images using 
by matching smoothed ellipse templates. He proposes to 
track microtubule movement by finding the best fit within a 
local search window, both intra-frame and inter-frame. In [6], 
microtubules are segmented using Gaussian kernels and 
thinning. Matching microtubule tips across frames is done 
using a graph constructed over the entire video.

We use particle filter to model the dynamics of
microtubule across frame. Particle filter is a popular method 
used in tracking applications. Gustafsson [7] provides a 
detail review on different particle filter applications. Based
on our previous work [8], we employ matched filter to 
enhance the raw microtubule images. In addition, we
combine the two snakes into one to account for growing and 
shortening, so only one minimization step is needed. Once
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the initial frame is segmented using active contour, we use 
particle filter to predict positions of microtubules tips in 
subsequent frames. The predicted location microtubule tips 
are used to initialize the active contour. Fig 1 shows the 
system diagram.

The paper is organized as following; section 2 describes 
how the particle filter is used to model microtubule
dynamics, section 3 explains the active contour used to 
segment individual microtubule dynamics, section 4
provides details on the image acquisition and specimen 
preparation steps, section 5 contains some of the tracking
results, and section 6 provides conclusion and discuss 
future work.

2. PARTICLE FILTER

Sequential Monte Carlo method, also known as particle
filters, is used as a practical solution to optimal estimation 
and filtering. The goal is to estimate the states, or hidden 
parameters, of a system sequentially as new observation 
becomes available. It can model a more general discrete-time
nonlinear, non-Gaussian dynamic system. Mathematically, 

we can try to find the posterior density
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microscopy provides good temporal resolution, microtubule 
dynamics sometimes are too large to be properly captured. 
This results in large microtubule tip movement between 
frames. If we simply use the segmentation result from the 
previous frame as the initialization for the current frame, the 
initialization could lie outside the capture range of the snake. 
Even with the capture range extended using gradient vector 

flow (GVF) [9], microtubule movement could still move out of 
the extended capture range of the microtubule.

Here we propose a simple model to model the motion of 
microtubule tips. We define the state as

T
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, where T

kk xx ),( ,2,1  is the 

location of a microtubule tip, kx ,3 is the velocity in x

direction, kx ,4 is the velocity is y direction, and ka is

random acceleration with uniformly distributed on the
interval (-5,5).
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Also we assume that the position of microtubule tip can 
be observed, hence we model the observed data as

T
kkk yyy ),( ,2,1=

v
and it is  corrupted by a random

Gaussian noise. We tuned the variance of the measurement 
noise to be 10.
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We choose a simple model such as (1) because
microtubule dynamics are stochastic in nature (hence
randomized acceleration). Although we can assume a
Gaussian distributed acceleration and solve the system
using Kalman filter, we use uniform distribution instead we 
assume that the microtubules grow or shorten equally likely. 

With the assumption and the model in (1), it is not 
possible to sample directly from the posterior density. So we 
sample from a known proposal distribution, )( kk Yxq . One

common choice of proposal is to use the transition prior.

)(),( 11 −− = kkkkk xxpYXxq (3)

Once the proposal distribution is defined, we can 
approximate the state mean by,
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where )( ,ikxϖ  is the normalized importance weight.
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Fig. 1.  Microtubules tracking system diagram
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For our algorithm, we set N = 200. We also resample the 
particle to avoid having algorithm degeneration where most
weights have value close to zero.

3. IMAGE SEGMENTATION

Images are first enhanced using matched filter. Matched
filtering is a technique used to maximize the signal to noise 
ratio. We use an inverted second derivative of a Gaussian 
function in a rectangular mask, described in [8] to model a 
microtubule segment. Mask pixels that are located along the 
center line of the rectangle have the highest values and the 
values decay exponentially away from the center line
throughout the mask area. Normalization is used so that the
response of a constant intensity area is zero. To account for 
different orientations, multiple masks are created where each 
one is the rotated version of the “base” model. These
different masks or filters are then convolved with the raw 
image. The maximum output among those different filters is 
selected as the output, which represents the best matched
microtubule segment at a particular pixel location. Output 
image is normalized so that the range of value of any pixel is 
between zero and one. Histogram equalization is performed 
on the output image to further improve contrast of
microtubule.

We choose active contour to represent the
segmentation result. In particular, the explicit form is
selected, which is found by minimizing the following energy 
term.
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Compared to implicit form (B-spline, level-set), the
explicit form directly minimizes contour energy along each 
point, which is easier to implement. For a two dimensional 
curve, the coordinates of each point ),( yx  along the curve 

is parameterized as )( isv , with i ranging from 0 to N. Active 
contour converges to microtubules by minimizes under
internal, and external constraints. Internal constraints
include smoothness and rigidity, which are approximated
using first and second derivatives, )( isv& and )( isv&&
respectively.  We segment an individual microtubule using 
open contour, so the internal energy terms are adjusted to 
reflect the topology requirement. External constraints,

))((int svE , include features that we want the active
contour to converge to. In this case, we use the matched 
filter output as the feature image as well as GVF to extend the 

capture range of the active contour. Initialization of the first 
frame is done manually, but subsequent initialization is done 
by using the predicted value from particle filters.

4. IMAGE ACQUISITION

The dataset we used is MCF-7 breast cancer cell lines stably 
expressing GFP:tubulin. Cells were grown maintained in 
RPMI 1640 supplemented with 10% fetal calf serum,
nonessential amino acids, 0.1% penicillin/streptomycin, and 
40 μg/ml G418 at 37°C in 5% CO2. To image microtubule 
dynamics we used a Perkin Elmer Ultraview RS spinning disc 
confocal. The Ultraview is mounted on a Zeiss Axiovert 
200m microscope that is enclosed in a heating chamber with 
heated stage and CO2 perfusion. A 100X Zeiss Plan-
Apochromat oil objective was used to image cells which 
were excited with the 488 nm laser line of an argon ion laser
with a dichroic mirror optimized for GFP fluorescence. The 
emission signal from the GFP:tubulin was detected using a 
cooled Hamamatsu ORCA-ER with exposure values of 300-
500 ms and no binning. The coordinates generated from this 
tracking feature were used to determine the distance
individual microtubule ends changed from a fixed point.

5. RESULT

Each dataset consists of 41 frames and each frame has 
resolution of 1344 pixels by 1024 pixels. Fig 1 shows the 
result of the tracking at various points in the video.

We only initialize the first frame manual and the
algorithm will automatically perform the segmentation and 
tracking in the subsequent frames. From the figure, we see 

a) Initial Frame b) Frame #10

c) Frame #20 d) Frame #40

Fig. 2.  Microtubules tracking result at different frames of the 
sequence, darker solid lines indicate the tracking.
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that the segmented tip follow the movement of microtubule
throughout the video. To illustrate the tip tracking capability
further, we compare the tip coordinate between manual
tracked and our algorithm. Position of the tip, x and y 
coordinate is shown in fig 3. Dashed line shows the manual 
tracked microtubule tip, while solid line shows the tip tracked 
using our algorithm.

We also compare the result with and without particle 
filter. Using manually segmented microtubule tip as the gold 
standard, we calculate the error of microtubule tip using 
particle filter and without using particle filter. We found that 
the improvement of using particle filter is 5.7%.

6. CONCLUSION AND FUTURE WORK

We have demonstrated how particle filter can be used to 
track microtubule movement by exploiting temporal
information between successive frames. In the future, more 
work is needed in validation and development of more 
accurate models for microtubule movements. Our model
serves two purposes: first is to provide better microtubule 
dynamics analysis  results, while second and more important 
one is to allow simulation of microtubule movement. An 
accurate microtubule model would significantly advance the 
technology of drug efficacy study and new drug
development in silico.
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