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ABSTRACT 

In this paper, the development of a computer-aided system 
for the classification of grade of neuroblastic differentiation 
is presented. This automated process is carried out within a 
multi-resolution framework that follows a coarse-to-fine 
strategy. Additionally, a novel segmentation approach using 
the Fisher-Rao criterion, embedded in the generic 
Expectation-Maximization algorithm, is employed. Multiple 
decisions from a classifier group are aggregated using a two-
step classifier combiner that consists of a majority voting 
process and a weighted sum rule using priori classifier 
accuracies. The developed system, when tested on 14,616 
image tiles, had the best overall accuracy of 96.89%. 
Furthermore, multi-resolution scheme combined with 
automated feature selection process resulted in 34% savings 
in computational costs on average when compared to a 
previously developed single-resolution system. Therefore, 
the performance of this system shows good promise for the 
computer-aided pathological assessment of the neuroblastic 
differentiation in clinical practice.  

Index Terms— Neuroblastoma, Multi-resolution, Image 
Segmentation, Pattern Classification, Classifier Combination

1. INTRODUCTION 

Pathological analysis of tissue samples with computer vision 
and image analysis techniques has been an active research 
area for years, especially after the introduction of whole-
slide digitizers. The focus of these efforts has been on 
quantitatively measuring and analyzing digital slides for 
breast cancer [1], cervical cancer [2], colonic mucosa [3] 
and prostate cancer [4]. However, few methods, to our best 
knowledge, have been proposed for the computerized 
classification of neuroblastoma (NB), a cancer mostly 
occurring in children. 

In clinical practice, the prognosis of neuroblastoma is 
carried out by highly trained pathologists familiar with the 
International Neuroblastoma Classification System 
developed by Shimada et al. [5]. In accordance with this 

system, grade of neuroblastic differentiation is one of the 
most prominent class-indicators. In terms of pathological 
characteristics established in this system, three grades are 
defined: undifferentiated (UD), poorly differentiated (PD) 
and differentiating (D). One typical tissue slide and example 
images associated with different differentiation grades are 
shown in Figure 1. In general, the undifferentiated cases 
contain small to middle-sized NB cells with thin cytoplasms, 
none-to-few neuroties and round to elongated nuclei. As for 
poorly differentiated cases, typical rosette patterns are often 
observed. Good indicators of differentiation class are large 
nuclei and cytoplasm, and the large ratio of diameter of cell 
to that of nucleus (typically > 2).  

In our previous work [6-7], we have developed a novel 
segmentation and grade categorization algorithm. Although 
the classification accuracy of the developed system is 
relatively good for a small representative test set, the 
computational costs are usually prohibitive. For instance, it 
takes 4166 seconds to process the slide shown in Figure 1(a) 
with classification accuracy of 96.46%. In these studies, the 
same set of manually selected features was used at each 
resolution. Furthermore, fewer classifiers were trained and 
tested, potentially excluding the contributions from other 
superior classifiers. To overcome these shortcomings, in this 
work, we employed a multi-resolution, multi-classifier 
approach with an automated feature selection process.

Figure 1: Typical tissue slide and the images associated with the 
three differentiation grades. (a) Typical tissue slide; Enlarged 
images for (b) undifferentiated (c) poorly-differentiated and (d)
differentiated cases.
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2. SYSTEM OVERVIEW 

2.1. Image Acquisition 

All images for this study were retrospectively collected 
from neuroblastoma patients according to an IRB approval. 
A digital scanner, ScanScope T2 digitizer (Aperio, San 
Diego, CA), is used to digitize the tissues at 40x 
magnification after they are stained by the haematoxylin and 
eosin (H&E). Each slide is then compressed at 
approximately 1:40 compression ratio before they are fed 
into our grading system. The resulting slide size is typically 
around 1~2.5GB each. 

2.2. Multi-resolution Framework 

Due to the overwhelmingly large image size, each tumor 
slide is split into non-overlapping tiles of size 512 × 512 
before they are processed one at a time by our grading 
system. Aiming at increasing the classification efficiency as 
much as possible, we employed a multi-resolution approach 
that decomposes every input image tile into multiple 
resolution representations. In our tests, a four layered multi-
resolution hierarchy is built up with {(512 × 512), 
(256 × 256), (128 × 128), (64× 64)} as the set of tile sizes 
from the highest to the lowest resolution, respectively. The 
underlying strategy of this classification system is to 
evaluate the classification results beginning with the lowest 
resolution images and stopping at the resolution level where 
the classification performance satisfies a pre-determined 
criterion.  

As shown in Figure 2, multiple image analysis steps
consisting of image segmentation, feature construction, 

feature selection and classification are followed at each 
resolution scale. As a way of improving the overall
classification performance, seven combinations of feature 
extractors and classifiers are used, followed by a two-step 
classifier combiner that makes the final decision after 
aggregating information from the group of classifiers.  

3. IMAGE ANALYSIS 

3.1. Image Decomposition 

In both training and testing phases, the whole procedure 
begins with the image decomposition in which each image is 
down-sampled in a way such that the lower resolution image 
can be used to perfectly reconstruct the bandwidth limited 
version of the next higher resolution image. Without the loss 
of generality, let us denote LI as the input image tile at the 
full resolution, where L is the number of resolution 
hierarchies. Then, the next lower resolution image 1−LI is 
created following the down-sampling process stated in [7]. 

3.2. Image Segmentation 

In the computerized system, a new segmentation approach, 
EMLDA presented in [6], was applied to each image tile. In 
summary, this method uses the Linear Discriminant Analysis 
as the kernel of the generic EM algorithm and iteratively 
partitions the image in such a way that the Fisher-Rao 
criterion is maximized: 
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where )|( θVJ is the Fisher-Rao criterion to be 
maximized; BS and WS are the between- and within-class 
scatter matrices [8]. Furthermore, V is the projection matrix 
that maps data into a feature subspace, whileθ is the labeling 
configuration that represents the pattern in which the image 
is segmented. BothV andθ are computed iteratively in the E- 
and M-step until )|( θVJ converges to a local maximum.  

3.3. Feature Construction and Selection 

All the features are extracted only from the segmented 
cytoplasm and neuropil regions since they bear the most 
discriminative information. Features including the entropy, 
mean and variance of the range of values within a local 
neighborhood, and the homogeneity degree of the co-
occurrence matrix associated with the L, A*, and B* image 
channels are extracted. As a result, the constructed feature 
vector consists of 24 elements. 

Due to the “peaking phenomenon” [8], the choice of a 
subset of most discriminating features is conducive to 
improving the classification accuracy. Additionally, using 
fewer features also contributes to the decrease in the 
computational complexity. Therefore, in practice, we 

Figure 2:  Flowchart of the developed classification system
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employed the Sequential Floating Forward Selection (SFFS) 
procedure [9], as it yields a strong flexibility of adding and 
removing features in a dynamical way. 

3.4. Classification 

In the experiments, a pool of seven classifiers,  
including K-Nearest Neighbor (KNN), Linear Discriminant 
Analysis (LDA)+KNN, LDA+Nearest Mean (NM), 
CORRLDA [10]+KNN, CORRLDA+NM, LDA+Bayesian 
and Support Vector Machine (SVM) with a linear kernel [8], 
are integrated into our system, with each one working 
independently.  

In our experiments, no particular preference on the
choice of the classifier across all resolution levels is 
observed. Each classifier contributes to the improvement of 
the classification accuracy in an approximately equal manner. 
Removing any one of the seven classifiers will result in an 
inferior recognition rate at least at one resolution level. This 
is due to the fact that each classifier, in our system, has its 
own feature regions where it yields the best performance, 
although their global performances look similar. Integrating 
multiple rather than a single classifier into our system, 
therefore, improves the resulting system performance. 

3.5. Classifier Combiner 

The resulting labels assigned by the multiple classifiers are 
combined using a two-step integration strategy before the 
final classification decision is made.  
Step 1. The combiner evaluates the outputs of all K 
classifiers (K=7 in this work) and produces a final
decision ∗θ that prefers to the decisions supported by the 
majority of the K classifiers: 

)(
},...2,1{

iVMaxArg
Ci∈

∗ =θ                      (2) 

where )(iV is the number of votes for the ith class collected 
from the K classifiers andC is the number of classes (C =3 
in this work). 
Step 2. After the label is voted, we next evaluate whether or 
not the classification result at the current resolution level is 
sufficiently good. The confidence degree on the 
classification result is defined as the sum of weights 
assigned to classifiers that agree with the combiner, since the 
combination scheme using the sum rule usually outperforms 
the others [11]. Each classifier weight is obtained by 
normalizing the classification accuracies of the K classifiers 
over the training data using the leave-one-out validation 
process, thus, indicating the degree of confidence on each 
classifier. As a result, the hypothesis test and the resulting 
decision rule can be written as: 

H0: classification result is good enough; quit the process; 
H1: go to the next higher resolution level for classification; 
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In (3), )(iwl is the priori recognition rate of the classifier i
at resolution level l and

ijδ is the Kronecker delta function.  

4. RESULTS 

In our system, all experiments are carried out on a Linux 
cluster consisting of 64 nodes, each of which has dual 2.4 
GHz Opteron 250 processors, 8 GB of RAM and two 250
GB SATA drives installed. In our experiments, 32 out of the 
64 nodes are used. Dividing the image into non-overlapping 
image tiles, we can take full advantage of parallel computing 
with this cluster. 

For training purposes, 129 image tiles are cropped at 
random from tumor slides of each grading class, hence a 
total of 387 image tiles for classifier training. The testing 
database used in our experiments comprises 10 studies with 
3, 2 and 5 whole-slide tumor samples from UD, PD and D 
grades, individually. The resulting best overall classification 
rate is 92.75%±7.42%. 

Classification results of a typical UD case, shown in 
Figure 1(a), with different threshold settings ( i.e. different 
confidence level configurations) are shown in Table 1, 
where, ξ scaled by 0.1, in the first column represents the set 
of thresholds when resolution level is escalated from 1 to 2, 
2 to 3 and 3 to 4. The entries in the last column, in addition, 
represent the numbers of “background” tiles, ones 
containing no structure of interest identified using the 
technique reported in [7]. 

Table 1: Classification results of a typical undifferentiated case 
with different threshold configurations, where L represents the 
resolution level; Acc is the classification accuracy given the 
ground truth; T is the time cost. 

  ξ
( x 0.1 ) 

T 
(sec) 

Acc 
(%) #L1 #L2 #L3 #L4 #Bg. 

7  8  9 1738 95.01 3797 134 36 80 10569 
9  8  7 1749 95.85 2761 761 429 93 10572 
8  8  8 1705 95.38 3405 368 167 105 10571 
9  9  9 2591 96.66 2772 407 255 610 10572 

10  10  10 2760 96.89 0 2182 797 1066 10571 
Of all the threshold sets, it can be concluded that, in 

general, the classification performances associated with the 
higher resolution levels are better than those of the lower 
resolution ones. However, better classification accuracies 
are obtained at the cost of more computational expenditures. 
In addition, the multi-resolution classification system 
demonstrates a good robustness since the classification 
accuracies corresponding to different threshold 
configurations are always maintained at a satisfying level, 
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comparable to the ones (97.67%, 98.45%, 98.45% and 
98.97% from the lowest to the highest resolution levels) over 
the training data. Furthermore, the time costs are also 
reduced by 34%, on average, as compared to those of the 
previous system [7]. In Figure 3, the classification results 
presented in Table 1 are visualized using classification maps 
and level maps, i.e. images indicating the class label and the 
resolution level at which the final decision on each image 
tile is made. Each pixel shown in Figure 3 represents a 
512× 512 image sub-region cropped from the original tumor 
slide consisting of 14,616 tiles. Color blue, cyan and yellow 
assigned to each pixel in images on the left column represent 
UD, PD and D classes respectively, while the background 
pixel is shown in white color. In each image on the right 
column, the brightest intensity represents either level 1 (i.e. 
the lowest resolution) or the background while the darkest 
regions indicate those areas where the classification 
decisions are made on the full resolution level. 

5. CONCLUSIONS 

This study demonstrates an automated system that classifies 
neuroblastoma according to the grade of differentiation 
within a multi-resolution framework. Combined with this 
multi-resolution paradigm, an automated feature selection 
algorithm (SFFS) considerably reduces the computational 
cost (66% of that of a previously developed single-
resolution system) while maintaining accuracy levels. A two-
step strategy combining multiple classifiers further helps the 
system yield good classification accuracies (the best 
accuracy of 96.89%). As a result, the developed system 
shows a great promise in assisting pathologists to classify 
neuroblastoma images. 
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Figure 3: From top to bottom, images on the left column are the 
classification results using the multi-resolution approach when ξ
is configured as Table1; Images on the right columns are the 
corresponding resolution level maps. 
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