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ABSTRACT 

Segmentation of echocardiographic imagery is central to the 
understanding, diagnosis, and treatment of cardiovascular 
disease. Although volumes of literature have been devoted 
to automated image segmentation, little work has been 
directed towards the validation of these techniques. An 
echocardiographic simulation has the advantage of exact 
knowledge of the myocardial borders, thus providing 
quantifiable measurements of an algorithms performance. 
Existing simulation tools either become intractable when 
generating multiple images, or accommodate only simplistic 
myocardial motion models. This paper proposes a novel tool 
for the simulation of short-axis echocardiographic image 
sequences towards the goal of automated segmentation 
algorithm validation. We consider a complete set of 
simulation concerns, including a realistic myocardial model, 
variable inter-frame speckle pattern correlation, and low 
computational cost for fast simulation. We demonstrate the 
value of the proposed tool by evaluating a speckle filtering 
algorithms effects on segmentation accuracy.  
 
Index Terms: Image analysis, image segmentation, image 
simulation, ultrasound. 

1. INTRODUCTION 

Segmentation of echocardiographic imagery provides 
researchers and clinicians with quantifiable measurements 
of vital physiological parameters. For example, 
segmentation results may be employed in the calculation of 
cardiac output or local myocardial strain. These 
measurements are central to the understanding, diagnosis, 
and treatment of cardiovascular disease. Traditionally, the 
myocardium is manually delineated by a trained technician 
in a tedious, time consuming, and highly variable process. 
Automated segmentation algorithms provide a fast and 
accurate alternative.  
 Robust validation of automated echocardiographic 
segmentation is largely ignored in the image processing 

community. Researchers often base algorithm performance 
solely on statistical comparisons with manual segmentation 
results which suffer from inter- and intra-observer error. An 
echocardiographic simulation, however, has the advantage 
of a priori knowledge of the exact myocardial border 
location and can provide compelling quantifiable 
measurements of an algorithms accuracy and precision. 
 A pervasive ultrasound simulation tool, FIELD II, has 
the ability to simulate B-mode ultrasound imagery [1, 2]. 
However, FIELD II becomes intractable when attempting to 
simulate multiple images, and does not include the ability to 
simulate correlated multi-frame sequences. Other 
researchers have previously made efforts to develop an 
echocardiographic simulation [3-5]. These simulations, 
however, consider simplistic myocardial motion models 
which ignore important parameters such as cardiac twist.  
 In this paper, we propose a novel tool for the simulation 
of short-axis echocardiographic image sequences. We 
consider a complete set of simulation concerns, including a 
realistic myocardial model, variable inter-frame speckle 
pattern correlation, and low computational cost for fast 
simulation. The next two sections discuss the myocardial 
model and ultrasound simulation method, respectively. We 
conclude with a discussion of the simulation including 
execution speed, an example algorithmic validation, and 
future research directions. 
 

2. MYOCARDIAL MODEL 

Figure 1 illustrates a typical short axis echocardiographic 
image. To create an analogous simulation, we must first 
define the myocardial borders at end-diastole and end-
systole. We then define our motion model, and finally 
determine movement throughout the full region of interest. 
 
2.1. Myocardial border definition 

The myocardium is first defined according to two unique 
borders at two unique time points in the cardiac cycle, i.e. 
the outer (epicardial) and inner (endocardial) borders at both 
end-diastole and end-systole. Each border is modeled as an 
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ellipse [6], parameterized by the ellipse center, major-axis 
diameter, minor-axis diameter, and orientation.  
 
2.2. Myocardial motion model 

We simulate myocardial motion via an affine transformation 
between the end-diastolic and end-systolic contours, 
allowing for myocardial contraction as well as an 
underlying rigid body motion. 
 Let [xD,yD] and [xS,yS] represent the endocardial (or 
epicardial) contour at end-diastole and end-systole, 
respectively. The relationship between these two contours 
can be defined as an affine transformation 
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consisting of lateral and axial translations δx and δy, lateral 
and axial scaling ρx and ρy, and rotation θ. These affine 
parameters are easily determined from the ellipse 
parameters mentioned in Section 2.1. 
 To determine the contour [x(t),y(t)] at an arbitrary time 
point t within the cardiac cycle, we apply a weighting 
function ]1,0[)( ∈tw  to the affine parameters as follows: 
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This produces the corresponding affine matrix B(t) 
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 The weighting function w(t) may be any smoothly 
varying continuous function, varying between zero and one. 
When w(t)=0, B(t) is the identity matrix and we thus 
produce the end-diastolic contour. When w(t)=1, B(t) is A 
and we thus produce the end-systolic contour. Figure 2 
illustrates a typical weighting function, derived from a 
standard left ventricular volume diagram [6].  

 In addition to the contractile and rigid body motion 
modeled via the affine transformation, we have included an 
additional parameter to model cardiac twist [7]. The twist 
angle allows points to move along the contour, independent 
of the underlying ellipse change, as illustrated in Figure 3. 
 
2.3. Motion field 

Given myocardial motion throughout the cardiac cycle, we 
are able to define motion in arbitrary space utilizing the 
piecewise linear transformation technique described in [8]. 
We simulate a moving object within an elastic medium, 
where the medium is fixed along the image border. 
 Let [u0,v0] represent the end-diastolic point set, 
consisting of discrete points along the end-diastolic contours 
and fixed points along the image borders. Let [u(t),v(t)] 
represent the point set at an arbitrary time t within the 
cardiac cycle, consisting of discrete points along the 
myocardial contours and the same fixed points along the 
image borders. Note that points in [u0,v0] and [u(t),v(t)] have 
a one-to-one correspondence.  
 We tessellate the end-diastolic image field into smaller 
regions via a Delaunay triangulation of [u0,v0] [9]. Figure 4 
illustrates a typical end-diastolic Delaunay triangulation, 
along with several corresponding triangles in an arbitrary 
frame. We then infer an affine mapping from [u0,v0] to 
[u(t),v(t)] for each triangle. Arbitrary points within the 
image field move according to the motion of the 
surrounding triangle. Thus, we define movement throughout 
the region of interest, driven by our myocardial contours. A 
typical motion field is illustrated in Figure 5. 
 

3. ULTRASOUND SIMULATION 

With a well defined myocardial model and the 
corresponding motion field, we are able to define the 
ultrasound simulation model. We define a scatterer field, 
aquire an image of the field with our simulated imaging 
system, and reconstruct the resulting radio frequency (RF) 

End-Diastole End-Systole  
Figure 3. Endocardial twist illustration. 
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Figure 2. Example weighting function. 
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Figure 1. B-mode short-axis myocardial diagram  

and typical echocardiographic image. 
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data into a recognizable echocardiographic sequence. Our 
simulation is based on the image formation models 
presented in [10] and [11].  
 
3.1. Scatterer field 

Homogeneous tissue is generally modeled as a collection of 
point scatterers with Gaussian distributed scattering 
amplitudes. To reduce computational complexity, we 
arrange point targets into a 2D matrix with uniform lateral 
spacing and uniform axial spacing. Axial spacing must 
satisfy the Nyquist criterion, i.e. point target frequency in 
the axial direction must be greater than twice the imaging 
system spatial frequency. 
 We generate an end-diastolic scatterer matrix via a 
variance map, which defines the scatterer amplitude 
variance in different spatial regions. Figure 6 illustrates a 
typical end-diastolic myocardial definition and the 
corresponding variance map. The increased variance at 
horizontal borders simulates a transducer positioned at the 
top of the image receiving strong reflections from interfaces 
perpendicular to the sound wave direction of travel. 
 To obtain a correlated scatterer sequence, we warp the 
end-diastolic scatterer matrix according to the piecewise 
linear motion field described in Section 2.3. The blood pool, 
however, is randomized at each time instance as blood is 
uncorrelated from frame to frame (a unique feature of our 
model that parallels the real imaging scenario). 
 
3.2. Image acquisition 

An echocardiographic linear imaging array typically 
acquires multiple radio frequency (RF) axial lines across the 
lateral dimension of the tissue. The RF signal at any point 
[x,y] can be modeled as a 2D spatial convolution of the 

tissue impulse response A(x,y) with the imaging system 
point spread function (PSF) h(x,y), i.e. 
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Taking the tissue impulse response as the aforementioned 
scatterer matrix, our RF signal is thus a simple spatial 
convolution with manageable computational complexity. 
 The imaging system PSF can be modeled by a number 
of functions, determined theoretically or experimentally. We 
define a spatially-invariant PSF of the form 
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where σx and σy are the lateral and axial PSF dimensions, c 
is the assumed speed of sound, f0 is the system frequency 
(Hz), and f0/c is the system spatial frequency (1/m). 
 To better replicate a typical system output, after 
convolution we choose N axial lines from our RF data set. 
Thus, we obtain N RF axial lines sampled at the system 
sampling frequency, separated by some lateral spacing, prior 
to the reconstruction step. 
 
3.3. Image reconstruction 

To obtain the image as seen by a echocardiographic 
technician, we apply some simple image reconstruction and 
post-processing techniques to the RF data. We first detect 
the baseband signal from the RF data via a Hilbert 
transform. We then interpolate the baseband data set over 
some uniformly sampled output space. Finally, we log-
compress the resultant image and saturate at some decibel 
level. Figure 7 shows a four frame image sequence after 
reconstruction ranging from end-diastole to end-systole. 
 

4. RESULTS & DISCUSSION 

This paper proposed a novel tool for the simulation of short-
axis echocardiographic image sequences towards the goal of 
validating/comparing segmentation performance. We 
extended the efforts of existing tools by addressing a more 
complete set of simulation concerns, including a realistic 
myocardial model, variable inter-frame speckle pattern 
correlation, and greatly reduced execution times. This 
simulation tool will advance the state-of-the-art in the 

  
Figure 5. Piecewise linear spatial transformation. 

  
Figure 4. Delaunay triangulation and correspondence. 

  
Figure 6. End-diastolic myocardium and variance map. 
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comparison and evaluation of echocardiographic image 
sequence segmentation. 
 For comparison, we simulated a single FIELD II image 
of 100,000 scatterers with 128 A-lines on a 3.6GHz Pentium 
4 processor with 2GB RAM. This single image took over 6 
hours to create, which would result in a 15 frame execution 
time of at least 3.75 days. Our simulation method, on the 
same system with comparable parameters, had an execution 
time of 140 seconds for a full 15 frame sequence. This is an 
over 2000 times execution time reduction . 
 To demonstrate the value of the proposed simulation as 
a validation tool, we attempted to quantify the effectiveness 
of speckle reducing anisotropic diffusion (SRAD) [12] as a 
pre-processing tool for echocardiographic segmentation. 
SRAD attempts to smooth homogenous tissue regions while 
preserving feature edges, thus improving segmentation 
accuracy. 
 We simulated five sequences, each containing ten 
frames, and attempted segmentation both before and after 
SRAD filtering. Each frame was segmented independently 
using an active contour approach [13] with a generalized 
gradient vector flow [14] external force. All contours were 
identically initialized and run until convergence. On 
average, SRAD filtering prior to segmentation provided 
34% and 54% reductions in endocardial and epicardial 
RMSE, respectively. Figure 8 illustrates segmentation 
results before and after SRAD. 
 The proposed simulation tool can be advanced in a 
number of ways. Increasingly accurate myocardial models, 
or even use of experimental data, can supplement the 
existing model. Various other echocardiographic 
characteristics are being considered, including shadowing, 
rib artifacts, a spatially variant PSF, and more faithful 
ultrasound reconstruction methods. Additionally, other 
echocardiographic imaging modes, such as long-axis 

myocardial imagery, could benefit from a similar tool. 
 Our cardiac simulation software will be available (by 
the time of ICIP’07) for download at viva.ee.virginia.edu. 
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Figure 7. (left) End-diastolic to (right) end-systolic simulated echocardiographic image sequence. 

  
Figure 8. Segmentation (left) before and (right) after SRAD. 
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