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ABSTRACT 

In radiotherapy treatment planning of cancer patients, the 
collection of multiple images of different and yet 
complementary information is rapidly becoming the norm. 
Beside CT data sets, PET and/or MRI or MRS images are 
also being used to aid in the definition of the target volume 
for treatment optimization. We are investigating methods to 
integrate available information for joint target registration 
and segmentation of multi-modality images as perceived by 
the human observer. Towards this goal, we are exploring 
multi-valued level set deformable models in conjunction 
with human perception models for simultaneous delineation 
of multi-modality images consisting of combinations of 
PET, CT, or MR datasets.  Information from multimodality 
image sets is integrated based on a logical model to define 
the final target volume.  The methods were demonstrated 
qualitatively on patient cases of lung cancer with PET/CT 
and a prostate patient case with CT and MR. We used a 
series of phantom data of CT, PET, and MR for 
quantification analysis. Phantom studies suggest 90% 
segmentation accuracy and less than 2% volume error when 
integrating all of the three modalities. This is compared with 
74% accuracy and 4.4% volume error when using CT-based 
systems. These results indicate that this semi-automated 
multimodality-based definition of the biophysical target 
would provide a feasible and accurate framework for 
integrating complementary imaging information from 
different modalities and potentially a useful tool for 
optimizing of cancer patients radiotherapy plans. 
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1. INTRODUCTION 
Recently, there has been a burgeoning interest in using 
different imaging modalities to delineate target volumes and 
organs at risk in radiotherapy treatment planning [1, 2]. 
Typically, a trained physician would perform the 
cumbersome structures delineation by hand because of lack 
of reliable (semi-) automated image segmentation techniques 
[3]. We have devised methods based on active contours to 
improve CT or PET imaging analysis [4, 5], however, single  

images either CT or PET tend not to carry the whole story, 
especially in the case of a complex disease like cancer. The  
Tumors boundaries are not always distinguishable by their 
Hounsfield numbers on CT nor only by their metabolic 
activity on PET. Moreover, tumors tend to have 
heterogeneous textures. Therefore, we define here the so 
called ‘biophysical target’, which could be thought of as a 
mapping from the imaging space to the 
radiologists/oncologists ‘perception’ space of the target 
boundary:  

Biophysical target ( , , , ...; )f CT PET MRI λ= ,       (1) 

where ( )f ⋅ is the mapping function from the different 
imaging modalities to the target space parameterized by λ ,
which represents user’s defined set of parameters 
representing his/her prior knowledge. Characterization of the 
mapping in (1) constitutes a challenging task because it 
relies on human higher-level expertise that needs to be 
translated into primitives that a computer algorithm can 
understand. 

In this work, we propose to use a generalization of the 
geometric deformable model known as the multi-valued 
level set (MVLS) method as our computational vehicle [6, 
7]. We combine the MVLS with a logical model based on 
user’s expertise to approximate the functional in Eq. (1). 
This process is currently conducted manually by contouring 
the different modalities separately and attempting to guess 
the ‘true’ combined target. The variational nature of the 
approach would further allow for incorporating smoothness 
constraint and other prior information, which would make 
them more robust to image noise and boundary gaps. 
Moreover, the multimodality structure allows the algorithm 
to work well in the presence of non-uniform uptakes, partial 
volume effects, and small mis-registration errors. Besides 
enjoying the typical characteristics of the level set method 
such as topological adaptation and inherited subpixel 
accuracy due to their continuum spatial nature. The method 
is demonstrated qualitatively and quantitively using clinical 
and phantom data as discussed in the following sections. 
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2. METHODS AND MATERIALS 

2.1. Data sets 
The proposed method was evaluated using 2 sets of clinical 
data from different cancer sites and a physical phantom data.  

2.1.1. Clinical data 
The method is demonstrated qualitatively using patient cases 
of non-small cell lung caner with FDG-PET/CT data, and 
prostate patient with CT/MR. Only qualitative evaluation 
was conducted here to avoid statistical bias due to inter- and 
intra-observer variability in contouring tumors. In the lung 
case, the data was acquired using an integrated PET/CT 
machine, where the PET had 5.2x5.2x3.4mm spatial 
resolution and the CT had 0.98x0.98x5 mm. In the case, of 
the prostate cancer, the CT had a spatial resolution of 
0.71x0.71x3 mm, while the MR had a spatial resolution of 
0.78x0.78x10 mm. The MR image we used was T1-
weighted. The quality of the delineation was judged visually 
by experienced oncologists. Quantitative analysis is 
described next. 

2.1.2. Physical phantom data 
The commercial phantom is a plastic anthropomorphic head 
of average human size. Targets consisting of plastic spheres 
and rods were placed throughout the cranium section of the 
phantom. Tap water was used for CT imaging. However, for 
MRI and PET imaging, the water inside the phantom was 
doped with CuNO3 and 18F-FDG, respectively. The cold 
spots spheres were considered as the segmentation targets 
(four spheres each is 25.4 mm in diameter (8.58 mL)). The 
rods were used as landmarks to assist in alignment. The CT 
data was digitized at 0.94x0.94x3 mm, PET data at 
2.57x2.57x2.57 mm, and MR at 0.98x0.98x2 mm.  

2.2. Proposed method for estimation of the biophysical 
target by concurrent multimodality segmentation 
algorithm 

The algorithm consists of four basic steps: (1) pre-
processing image enhancement, (2) co-registration of 
multimodality images, (3) definition of the logical model 
parameters, and (4) application of the MVLS algorithm for 
concurrent segmentation of the used multimodality images. 

2.2.1. Co-registration  
We used a rigid body co-registration scheme based on 
normalized mutual information prior to segmentation to 
refine patient setups  misalignment in PET/CT and the 
rescaling in MR/CT [8]: 

( )  ( )
( , )

H A H BNMI
H A B

+= ,                            (2) 

where ( )H ⋅  is Shannon entropy. 

2.2.2. Multimodality image segmentation by the level set 
method 

The problem of spatial neighborhood definition encountered 
in clustering methods typically used in such multi-spectral 
analysis is inherently ameliorated in active contour methods. 
However, the generalization to multi-imaging modality is 
based on redefining the concept of boundary as a logical 
combination of multiple images that mimics human 
perception. For this seek we used the approach of vectorized 
or multi-valued level set (MVLS) approach [6, 7]. The 
solution to the level set problem is found by iteratively by 
solving the following partial differential equation (PDE): 

( ) ( )V F
t
φ κ φ∂ = ∇ + Θ

∂
,                                              (3)

where φ  is an implicit function (e.g., a signed distance) that 
represents the evolving level set, (at the boundary 
contour ( ) 0Cφ = . V is a velocity function proportional to 
the curvature and inversely proportional to the image 
gradient. ( )F Θ is a constraint that is typically used to 
further refine the performance of the algorithm and could be 
modified to include shape priors and spring forces. 
Following [6], we used an approach based on the Mumford-
Shah model. In this case, the level set method for multi-
modality segmentation of N images could be formulated as: 
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where H is the Heaviside function, ( )i ic c+ −  corresponds to 

the means inside (outside) the contour, and ( , )i iλ λ+ − are
user-defined parameter pairs providing ‘importance weights’ 
for each of the imaging modalities in comparison with the 
other modalities. There are various logical combinations of 
images to capture the underlying biophysical target. In our 
case, we have chosen to apply, what we denote as a soft-
AND model. Thus, in this soft-AND model, the logical 
combination of the images is determined by assigning the 
weights iλ± by experienced in Eq. (3). Currently this is done 
interactively; however, we are investigating regression 
methods for automated prediction of these weights 
depending on the features of the cancer site. The soft-AND 
model could be regarded as a compromise between using a 
restricted AND model that would only emphasize similar 
features between the images and an OR model, which tends 
to be too flexible allowing probably irrelevant features to be 
included. 
After the logical model parameters were assigned, the 
MVLS algorithm starts by some initial contour in the multi-
image domain, then the curve evolves under the influence of 
the internal (contour curvature and string force) and external 
forces until equilibrium is reached. 
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3. EXPERIMENTAL RESULTS 

3.1. Application to clinical multimodality data 

The biophysical target was identified as the pathological 
tumor in the PET/CT lung case, and the prostate organ in the 
MRI/CT case. 

In the case of the lung PET/CT shown in Fig 1, the data 
were collected off an integrated PET/CT machine; 
moreover, we applied a rigid body mutual information 
algorithm to correct for small patient misalignments, where 
NMI improved slightly from 1.21 to 1.22. The PET image 
was corrected for motion artifacts using a deconvolution 
method. We selected the larger tumor (right one) for multi-
modality analysis. In Figure 1b, we initialize the MVLS 
algorithm with a generic circle (in black) of 15.4 mm 
diameter. In Fig. 1c, we show the curve evolution in steps of 
10 iterations and the final estimated contour (in thick red). 
The MVLS algorithm converged in 120 iterations in few 
seconds. 

The analysis of prostate MRI/CT is more challenging 
because of lack hardware registration and small contrast 
difference between the prostate and surrounding normal 
tissues. In Figure 2a we show checkerboard of the co-
registration process T1-MRI/CT using rigid body mutual 
information (MI) algorithm. NMI improved significantly in 
this case from 1.07 to 1.11. The results of this example 
seems to be more dependent on initial shape, therefore, the 
initial contour was emphasized in the algorithm as a prior 
knowledge. In Fig. 2b, we show the curve evolution in steps 
of 10 iterations and the final estimated contour (in thick red). 
The algorithm converged after 50 iterations. In both of the 
lung and the prostate cases, the delineated biophysical target 
appeared to agree well with human perception of the ‘truth’. 

3.2.  Quantitative validation using physical phantom 
data 
The phantom data was first co-registered using the CT data 
as reference. CT is typically used for clinical treatment 
planning of patients and hence it was selected as a 
benchmark. The NMI between CT and MR was 1.22 and 
between CT and PET was 1.28 (see Figure 3a).  For 
validation of segmentation quality, we adopted a spatial 
overlap index known as the Dice similarity coefficient 
(DSC) to evaluate the algorithm performance with respect to 
the known phantom dimensions. We prefer this metric to 
reporting volumes only, as commonly practiced, because it 
takes into account the spatial dependency. The segmentation 
results in terms of DSC (Figure 3b) and volume estimation 
error (Figure 3c) of the four balls. 

The average DSC for PET/CT/MR was estimated to be 
90% suggesting excellent segmentation performance (22% 
improvement over using CT alone) and the error in 
estimated volume is 1.3% (74% error reduction compared 
with CT). 

(a)

(b) (c) 
Figure 1. Analysis of lung PET/CT. (a) Co-registered PET/CT, 
(b) The MVLS algorithm is initialized with a circle (in black) of 
15.4 mm diameter, (c) Curve evolution in steps of 10 iterations 
and the final estimated contour (in thick red). 

(a)

(b) (c)
Figure 2. Analysis of prostate MRI/CT. (a) Co-registered MRI/CT 
and selected ROI, (b) The MVLS algorithm is initialized with a 
shape prior that roughly resembles prostate  (in black), (c) Curve 
evolution in steps of 10 iterations and the final estimated contour 
(in thick red). 
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(c)
Figure 3. Physical phantom validation. (a) Registration of the 
multimodality phantom in CERR (rods were used to evaluate 
alignment and the balls to evaluate the quality of segmenting the 
combined PET/CT/MRI data). Estimated segmentation accuracy in 
terms of (b) DSC and (c) percentage error in estimated volume.

4. CONCLUSIONS 

In this work, we have demonstrated a new approach to semi-
automatically estimate the biophysical target in radiotherapy 
treatment planning by integrating information from different 
multimodality images. The method relies on combining 

multi-valued level set active contours model with a logical 
human perception model. The current logical model could 
be tuned by changing the weights of the different images 
regionally in accordance with the user’s experience. 
Increasing the number of images would improve the 
capturing of the contour boundary of the biophysical target. 
Our simulations on patients’ data and physical phantoms 
indicate that the algorithm results are promising and could 
provide radiologists/oncologists with reliable and efficient 
tools to analyze simultaneously different modality data in 
different cancer sites. However, further intra- and inter-
observer variability analyses are required for validation.  We 
hope this data will be ready by the time of the meeting.  
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