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ABSTRACT

Vessel extraction and vessel motion estimation from X-ray

angiograms has been a challenging computer vision problem

for several years. We have developed a fast and accurate

method for extracting and tracking intravascular imaging data

from X-ray angiograms. We accomplish this by reconstruct-

ing a moving 3D vessel, which contains more information

than the static 2D snapshot image. Our approach involves

identifying the vessel-of-interest in two biplane images, ab-

stracting them into centerlines, and tracking them in ensu-

ing images using deformable templates and graph techniques

for optimization. When tested on fifteen patient datasets, the

computational time was approximately 5 seconds per vessel

per frame for vessels of length 80-100mm.

Index Terms— X-ray angiocardiography, Motion analy-

sis, Blood vessels

1. BACKGROUND AND PURPOSE

With the wide availability and utility of X-ray coronary an-

giography, it is still very important to continue to investigate

methods to improve coronary disease analysis using X-rays.

X-ray based quantitative coronary analysis (QCA) can be op-

timized by incorporating data from additional images in the

angiogram sequence. For this reason, we propose a fast tem-

poral vessel tracking algorithm to provide additional informa-

tion on the same vessel over time.

This motion estimation procedure primarily focuses on

tracking the centerlines of the blood vessels. We briefly re-

view previous two-dimensional (2-D) and three-dimensional

(3-D) tracking processes. In previous 2-D cardiac motion esti-

mation techniques, optical flow methods [1], Kalman Snakes

[2] and deformable lines [3] were used to track the arterial

centerline. In the 3-D techniques, a 3-D model of the coro-

nary artery centerlines is constructed at one time frame and

then deformed to match up with the angiogram image pairs

at later frames. Shechter et al[4], minimized B-spline curve

energies, while Chen and Carrol [5] found temporal corre-

spondences by minimizing an arterial shape function. Both

the 2-D and 3-D methods have yielded promising results over

the years, but are still not clinically practical due to intensive

computational requirements, especially the 3-D methods [6].

Also, regarding the 2-D methods mentioned above, tracking

becomes quite complex in regions of multiple vessel overlap.

We present an efficient way to abstract a vessel into its

centerline and an optimal way to track the vessel over time.

We also present a brief overview of our vessel sizing and 3D

reconstruction processes, but these are not currently the main

thrust of the paper.

2. METHOD

The end-to-end process can be divided into three major stages:

(1) The prerequisite stage where a vessel is identified and ab-

stracted into its centerline; (2) the tracking stage where the

centerline is approximated into a polyline and tracked using

deformable templates and (3) the post-tracking stage where

the 3D vessel is reconstructed.

2.1. Tracking prerequisites

The process is initiated with the user providing the proxi-

mal and distal points on the vessel of interest in the start-

ing frame of the X-ray angiography sequence. A region-of-

interest (ROI) around the vessel is then established.

2.1.1. Vessel Enhancement.

Because of the relatively low Signal-to-Noise Ratio (SNR)

the vessels need to be enhanced,while suppressing other sig-

nals due to bone, tissue and noise. We used an enhancement

filter modified from [7], based on the principle that the sec-

ond derivatives of an image give strong responses on blobs

or ridges. A vessel can be viewed as a ridge with its local

extremum occurring at the centerline. The vessel ROI, I , is

convolved with a Gaussian kernel of standard deviation σ cen-

tered at pixel p(x, y). The Hessian matrix of the convolved

sub-image is thus given as:

H(I, σ, p) =

(
∂2IN (σ,p)

∂x2
∂2IN (σ,p)

∂y∂x
∂2IN (σ,p)

∂x∂y
∂2IN (σ,p)

∂y2

)
(1)

λ1 and λ2 are the eigenvalues of the Hessian matrix H where
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‖λ1‖ << ‖λ2‖ while v1 and v2 are the eigenvectors corre-

sponding to λ1 and λ2 . Unlike its previous implementations,

we use only the eigenvectors of the Hessian matrix for vessel

enhancement.

At each pixel p, the potential edge of the vessel is com-

puted by adding the vector ±σv1, where v1 represents the di-

rection perpendicular to the ridge direction. The vessel edge

strength in either direction ∇I(σ, p + ±σ) is then computed

using the standard gradient methods. The edge strength thus

provides a measure of the likelihood of p being a ridge pixel

and σ being the true vessel width. The filter response is there-

fore defined as the smaller angle between v1 and edge strength

∇I(.) computed to the left and the right of p.

2.1.2. Centerline Extraction.

We used the traditional non-maximal suppression and hys-

teresis thresholding algorithms introduced into the computer

vision community as the post-processing routines in Canny’s

Edge Detector [8], to better define the centerlines.

Lastly, we used standard computer vision edge linking

techniques to connect the remaining vessel ”stubs” to com-

plete the centerline extraction process An example of the ex-

traction process on a vessel ROI is shown in figure 1.

Fig. 1. The left image shows an original ROI image with

the vessel of interest in the middle of the image and the right

image shows the resulting centerlines.

2.1.3. Vessel Size Estimation.

Once the centerline has been successfully extracted, edge can-

didates are computed using profiles, perpendicular to the cen-

terline. Each profile is de-noised and the first derivatives of

the profile are obtained using central differences. The gradi-

ent points become candidate edge points.

Because the shape of a vessel edges closely follow the ori-

entation of its centerline, the centerline points are deformed

to the most appropriate edge candidates to form a left (and

right) contour line, as a smoothness constraint is imposed on

the deformation. The vessel size estimate is obtained as the

distance between the left and right edge points.

2.2. Vessel Tracking

The first step in performing the actual motion tracking is to

approximate the centerline into a polyline which involves fit-

Fig. 2. Extracted contours from a vessel in region with mul-

tiple vessel overlap (see top) and bifurcations; from a vessel

with narrowing due to stenosis.

ting straight line segments (with a pre-specified tolerance) to

the centerline points. The process finds the size and position

of the maximum deviation of the line that joins the endpoints

of the curve. If the maximum deviation exceeds the allowable

tolerance, the centerline is broken at the point of maximum

deviation and the test is repeated. In this manner the entire

centerline is broken down to line segments, which adhere to

the original data with the pre-specified tolerance.

2.2.1. Fast Polyline Tracking.

So far, the vessel features have been obtained in one frame.

The vertices of the polyline are selected as anchor points and

they are the key features to be tracked in the algorithm.

Having a priori information about the extent of motion

of the coronary vessels, we then select a larger ROI in the

ensuing image (to accommodate vessel motion) and in a sim-

ilar fashion as before, we reduce the image to its centerline

abstraction using only the value of σ estimated from the pre-

vious image as the average vessel width. This significantly

reduces the computational intensity, because we only perform

a single scale search, unlike in the first image.

A square search neighborhood is then placed around each

vertex of the polyline as in [3]. We select a relatively large

search space, a neighborhood window WN of 61 x 61 pixels

where the original images were 512 x 512. All centerline

points in the search space are candidate vertices of the new

polyline.

The candidate vertices represent the end points of candi-

date segments. These segments are treated as the nodes of a

graph while the angles between adjacent segments correspond

to the edges between the nodes of the graph.

The goal of this section of the algorithm is to perform a

nonrigid deformation on the original polyline ϕ into a new

polyline ϕ′. We perform the deformation by first using a

spring model, which introduces a penalty for stretching the
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line segment from one frame to the next.

e1(ϕ, ϕ′) =
(‖ϕ′‖ − ‖ϕ‖)2
‖ϕ′‖ + ‖ϕ‖ (2)

Next, the shape of the polyline is constrained by introducing a

penalty for changing the angle θ between 2 adjacent segments

of the polyline, so that:

e2(θ, θ′) =
(θ′ − θ)2

θ′ + θ
(3)

Hence, the total cost of deforming two adjacent line segment

ϕi and ϕj to ϕ′
i and ϕ′

j is:

E = αe1(ϕi, ϕ
′
i) + βe2(θ, θ′) (4)

Having assigned the cost value above to the edges of the graph,

we use Dijkstra’s shortest path technique to find the minimum

cost of deformation. The nodes on the shortest path became

the line segments of the new polyline in the next image frame.

The true centerline is then obtained by performing a quick

search in the vicinity of the estimated polyline. A new poly-

line is created from the true centerline - this step is required

because the estimated polyline could potentially fall outside

the vessel if there are local deformations unaccounted for by

the global polyline. The process is repeated for every image

in the angiography sequence until at least one of the search

spaces is empty in a new image.

Fig. 3. The results of 2D+t motion tracking are shown. From

top left to bottom right are results of tracking in 15 frame in-

tervals, i.e at frame t0, t15, t30 and t45. Observe the position

of coronary tree relative to the diaphragm.

2.3. Vessel 3-D Reconstruction

Once the vessel-of-interest has been tracked in the two bi-

plane sequences, angulation information, the R and t matrices

are retrieved from the image gantries. One of the 2 views is

selected as the primary, and using the centerline points of the

primary, epipolar lines are constructed in the secondary im-

age. The intersections of the epipolar lines with the points on

the vessel centerline are taken as the correspondence points.

A 3-D centerline is reconstructed using standard epipolar ge-

ometry constraints. The vessel lumen is generated from the

centerline using the previously calculated centerline radius

values.

Iso-correction is performed by optimizing the geometry

at which the 2-D re-projection of newly generated 3-D ves-

sel best aligns with the original image representation in the

two views, using the simplex algorithm for the optimization.

More details on this process can be found in [9].

Fig. 4. A 3-D reconstruc-

tion of a vessel from one

time frame, showing a po-

tential narrowing. Simi-

lar views from more time

frames can confirm/reject

and better quantify such a

hypothesis.

3. RESULTS

We tested our algorithm on fifteen patient datasets, ten from

single plane angiograms and five end-to-end from biplane an-

giograms. The patients were imaged using a Toshiba DFP-

2000A/AS for single plane and Toshiba DFP-2000A/3 for bi-

plane. Both systems have FOV of 172μ.

The computational platform used in testing was a Pen-

tium 4 running at 3.0GHz. All implementation was done in

C++, with additional FLTK (Fast Light Toolkit) libraries for

the front-end interface and VTK (The Visual Toolkit) libraries

for visualization.

The test datasets involved a combination of vessel types

with lengths ranging from about 80-110mm. On average,

there were about 70 frames in a sequence where the vessel

of interest was clearly visible and could be tracked. Some of

the average processing times per vessel per frame are given in

Table 1 below.
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Average
Major Step Processing Time

Vessel enhancement (single-scale) ≈ 1s

Centerline extraction < 1s

Vessel sizing ≈ 0.5-3s

Polyline tracking ≈ 0.5-3s

Vessel reconstruction and optimization < 2s

Table 1. Computational times per vessel per frame.

Fig. 5. Trajectory of a coro-

nary vessel centerline over

time for one complete cardiac

phase. Dense dark region rep-

resents the slower moving di-

astole phase.

4. DISCUSSION

We have presented a close to real-time algorithm to charac-

terize, track and reconstruct a 3-D moving vessel over time

by developing new algorithms and enhancing already exist-

ing ones from the field of computer vision. We believe that

the presented method can be readily used clinically as a pre-

cursor to optimizing many intravascular QCA processes such

as vessel sizing for stenosis evaluation, plaque characteriza-

tion etc., from X-ray angiograms.

As a next step, we intend to test our method against previ-

ous 2-D methods and also against the more complicated, but

slower 3-D methods discussed in the paper, to compare the

quality and speed of tracking. We also plan to validate the

algorithm quantitatively using phantoms with known param-

eters.

One major practical advantage that our proposed algo-

rithm has over previous approaches is its strong potential for

application in clinical rather than only research environments.
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