
 
 

 

ABSTRACT

 
      An automated method for blood vessel segmentation is 
presented in this paper. The approach uses the nonlinear 
orthogonal projection to capture the features of vessel 
networks, and derives a novel local adaptive thresholding 
algorithm for vessel detection. By embedding in a kind of image 
decomposition model, the selection of system parameter which 
reflects the size of concerned convex set is examined. This 
approach differs from previously known methods in that it uses 
matched filtering, vessel tracking or supervised methods. The 
algorithm was tested on two publicly available databases: the 
DRIVE and the STARE. By comparison with hand-labeled 
ground truth, good average accuracies are achieved for the 
both databases.   

 
   Index Terms—Retinal imaging, vessel segmentation, 
nonlinear orthogonal projection, image decomposition, 
parameter selection 
 

1. INTRODUCTION
The quantitative analysis of vessels and optic disc on digital 
retinal images is an essential step in the diagnosis of eye 
diseases, such as Diabetic Retinopathy (DR), glaucoma, and 
myopia. Manual measurements through visual inspection are 
time-consuming, tedious or even impossible when the vascular 
network is complex, or the signal-to-noise is weak. Therefore, 
developing a tool to automate the process of analysis is 
important to overcome the disadvantages of visual analysis 
[1]-[15]. 
    Automated approaches to blood vessel delineation in digital 
retinal images can be roughly divided into two main categories: 
synchronous network segmentation and single vessel tracking. 
The former synchronously classifies each pixel based on some 
local features, including matched filtering (e.g., [2], [3]), 
edge-based method (e.g., [4], [5]), local adaptive thresholding 
(e.g., [6]), wavelet transform [7] and morphological filtering 
[8], [9]. The tracking methods search a continuous vessel 
segment starting from a point given by manually or 

automatically, based on certain local properties [1], [10]-[13]. 
Beyond these, the work in [14] combines principal component 
analysis with neural network to classify image pixels, while 
[15] employs the feature vectors from ridge extraction and the 
kNN-classifier for vessel detection.  
       In this paper, we present a novel method for vessel network 
segmentation in the basis of nonlinear projections [16]. 
Nonlinear projection algorithm has been introduced to solve 
total variation minimization problems involved in image 
decompositions [16], [17]. The goal of image decompositions 
is to split an original image into two components: one for the 
structural part and the other for the textural part. Such a 
decomposition problem can be modeled by convex 
optimization scheme [16]-[21]. The fundamental idea of the 
nonlinear projection algorithm is to transform the original 
convex optimization problem to searching the projection of the 
given image function into a bounded convex ball of a Banach 
space, G space [21], [22]. 
      In the present study, the oscillating components of retinal 
images are adopted to capture the features of blood vessel 
networks. Furthermore, a vessel detection algorithm is derived 
from the nonlinear projections. This is a new adaptive 
thresholding method compared with the variational image 
binarization algorithm introduced in [23]. Both methods 
perform automatic thresholding with threshold surfaces 
generated by using variational models.   
      In order to improve the segmentation results, 
morphological open operations are also applied for the post 
processing of the resulting binary images. Finally, the images 
from two publicly available databases, the DRIVE database 
[15] and the STARE database [2], are used to evaluate the 
method proposed. 
     The remainder of this paper is organized as follows. In 
Section 2, we describe the fixed point algorithm for estimating 
the nonlinear orthogonal projection of an image function onto a 
bounded closed convex set that consists of oscillating 
functions. We also discuss the problem of determining an 
optimal radius of the closed convex set. In Section 3, we detail 
the vessel detection algorithm. In Section 4, we present the 
evaluation of results. Finally, we conclude the paper in Section 
5. 
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2. NONLINEAR PROJECTIONS

 In this section, we will review some basic facts about nonlinear 
projections onto closed convex sets and variational image 
decompositions. A fixed point algorithm for computing the 
nonlinear projection and a method for determining the radius of 
a closed convex set which severs as a projective space will also 
be presented. 
 

2.1 Projection onto a Convex Set 
      Let H be a Hilbert space, HX be convex, closed, and 
non-empty. For Hg , we define gPX , called the projection 
of g onto X, to be the optimum for 
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That is, the minimizer is the closest point in X to g. An 
interesting property of the projection function is that for any 

Hg there is a unique optimum for (1). 
       In this work, we consider the discrete case and two 
dimensional digital images. All the functions will be 
2-dimensional matrices of size NM . In order to capture the 
texture information, we will consider the projection onto a 
closed convex set consisted of oscillating functions.  

  Let 0X  be the space of functions with zero mean: 
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It has been proven that the set 0X  identifies with the following 
set of functions [20]: 
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where div  represents the divergence of a vector-valued 
function yxdiv // 21 . On G, a Banach norm, 
so-called G norm, is defined as [21], [22]: 
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The set G with the corresponding G norm defined in (4) is 
called G space. 

  To get the textural part of an image f, a natural idea is to 
project the original image into a bounded subset of space G. For 
a non-negative constant μ, if we denote by G  the closed ball 
with radius μ: 
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then G  is a closed convex subset of G. 
  

2.2   Fixed Point Algorithm 

     Computing the projection fPG amounts to finding the 

solution of the following problem: 
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This problem can be solved by a fixed point algorithm:  
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In [16], it has been proven that if 8/1  then ndiv  

converges to fPG as n . 

In the past years, a popular variation model, so-called ROF 
model, has been applied for decomposing an image 

)( 22Lf  into a sum of two functions vu , where 

)( 2BVu is a function of bounded variation, while 

)( 22Lv is an oscillating function representing texture or 
noise [16]-[21]. The decomposition problem can be modeled 
by the following total variation minimization: 
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where || u  is the total variation of u, 0 is the 

regularization parameter, serving as a scaling level to separate 
the two terms. If we let fPv G , and  fPfu G , 

then u and v are the solution of (8). This was proven from 
standard convex duality theory [16].  
     The above notations imply that for a given constant  we can 
embed the projection procedure into the decomposition 
procedure. In the next subsection, we will utilize this 
embedding to address the selection problem of the radius . 
 

2.3 Radius Selection 

    The parameter μ determines the size of the convex ballG  
and hence the property of the corresponding nonlinear 
projective. In the image decomposition model (8), μ serves as a 
regularization parameter to balance the bounded variation and 
the oscillating components. In [21], the supremum of μ has 
been given by introducing the concept of G norm.  
      In practice, there were some approaches for selection of 
regularization parameter, including adaptive iteration method 
[16], [18], scale related automatic method [24] and correlation 
graph-based selection method [17]. In this study, we employ 
the correlation between the bounded variation and oscillating 
components as a measure to select an optimal parameter. The 
correlation between fPfu G and fPv G is defined 

as: 
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where 2
g  represents the variance of function g, ),cov( hg  

represents the covariance between functions g and h. It is easy 
to see that 

1|),(| vucorr .                                           (10) 
The ideal decomposition result should be that the two 
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components are not correlated, that is, 0),( vucorr . As 

proved in [28], 0),( vucorr holds for any positive μ. 
Hence we can select an optimal parameter μ based on 
minimizing the correlation. Fig. 1 shows an example. The 
correlation ),( vucorr of 50 values of μ is plotted. The initial 

value of μ was set as 40 , and each time the value of μ was 

set as )1(4 nn . After 50 iterations, a better value of 

40 (corresponding to n = 9) was found.   
  In the next section, we will describe an algorithm for retinal 

vessel segmentation based on the above nonlinear projection. 

3.  VESSEL DETECTION ALGORITHM

 From the notations above, the nonlinear projection can be used 
to capture the texture structures in images. In this approach, we 
employ the orthogonal projection to perform retinal blood 
vessel detection.  
      Motivated by the identical relationship between G and 0X ,  
we get an automatic method to threshold the projective as: 

otherwise
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This is equivalent to the global thresholding using the mean of 
projective as a threshold value, because fPG  belongs to the 

set 0X . From the decomposition model (8) and the Proposition 
2, the method is also equivalent to the following local adaptive 
thresholding with threshold surface u: 

otherwise
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since uffPG . In some means, this is a new variational 

image binarization algorithm in comparison with the method 

proposed in [23], where a multiscale variation model was 
introduced to generate smooth threshold surface. 
     After thresholding the projective, the morphological open 
operators are applied for removing blob-like structures and 
some shorter linear structures in the resulting binary image. In 
the experiments of this approach, the open operators with linear 
structural elements are applied to the binary image along twelve 
directions (0o, 15o, 30o, …, and 165o). The length of linear 
structure elements is set as 17 pixels. Our vessel detection 
algorithm can be summarized as the following steps: 
Step 1: Choose a parameter μ, compute the orthogonal 

projective fPG  using the fixed point algorithm (7). 

Step 2: Threshold the projective as stating in (9) to get the 
output binary image Out. 

Step 3: Apply morphological open operators to the binary 
image Out to remove blob-like structures and some 
shorter linear structures. 

4. EXPERIMENTAL RESULTS

The 20 images from the test set of DRIVE database [15] and the 
20 images from the website of STARE project [2] were used for 
evaluating our detection method. By examining the total of 40 
images, the value of 40  can be employed as a common 
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Fig. 2.  Vessel segmentation on images from the DRIVE and STARE 
databases. First row: (a) original image from DRIVE database; (b) original 
image from STARE database. Second row: segmented images using our 
method. Bottom row: manual labeled results from DRIVE and STARE 
databases [15], [2]. 
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Fig. 1. An example for parameter selection. (a) Input image shown in Fig. 1(b). 
(b) Correlation graph. (c) and (d) are the corresponding components u and v + 
150 using a better value of 40 . 
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optimal parameter for computing the nonlinear projection of 
images from the both databases. 
      As shown in Fig. 2, the detection results using our method 
and the manual labeled results from DIRIVE and STARE 
databases are compared. Using the manual labeled sets as 
reference, the values for the fraction of pixels erroneously 
detected as vessel pixels (false positive fraction, FPF) and for 
the fraction of pixels correctly detected as vessel pixels (true 
positive fraction, TPF) are examined; the average accuracy 
calculated with our method for the test sets are also 
investigated.  
      For the total of 20 images from STARE set, where half is 
normal and half is abnormal, the TPF, the FPF and the average 
accuracy are 0.9373, 0.0264 and 90.87%, respectively. On the 
data set, the average accuracy reported in [2] is 92.75%. The 
value reported by Jiang et al. in [6] is 90.09%. 
     On the DRIVE set, the experimental results show that 75.03 
percent of the vessel pixels have been correctly detected, and 
the percentage of pixels erroneously classified is about 15.13. 
Meanwhile, an average accuracy of 96.40% is achieved. Based 
on the same database, the average accuracy reported in [15] is 
94.41%.Using the method proposed in [6], the average 
accuracy is 89.11%. 

5. CONCLUSION

The nonlinear projection algorithm has been recently applied to 
image processing and analysis. However, to our knowledge, 
there have been no published reports on the applications of 
nonlinear projections to retinal image analysis. In this paper, 
we have proposed a new approach to the automatic detection of 
retinal blood vessels based on nonlinear projections. The 
approach involved in selecting an optimal radius of the 
bounded convex set of oscillating functions. The radius can be 
also considered as the regularization parameter of ROF’s image 
decomposition model. The experimental results indicate that to 
all the used images there is a common suited parameter for the 
procedure of nonlinear projection and a higher accuracy has 
achieved for the images from both the DRIVE and the STARE 
databases. 
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