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ABSTRACT
Recently it has been shown that in Image Processing, the

usual sum and product of the reals are not the only opera-

tions that can be used. Several other operations provided by

fuzzy logic perform well in this application. We continue this

line of research and we study the possibility to use some pairs

of pseudo-operations. We define in the present paper pseudo-

linear Haar wavelets, and we perform multi-channel decom-

position of images. We study some pairs of pseudo-operations

determined by a continuous, strictly increasing generator in-

stead of the classical sum and multiplication and Haar-type

wavelets based on these operations. The results show us that

pseudo–linear Haar wavelets can be used as an alternative of

classical Haar wavelets since the perfect reconstruction prop-

erty is conserved.

Index Terms— pseudo-operations, Haar wavelets

1. INTRODUCTION

In classical Functional Analysis and classical Approximation

Theory, the underlying algebraic structure is the linear space

structure. The mathematical analysis using nonlinear math-

ematical structures is called idempotent analysis (see [6]) or

pseudo-analysis (see [8], [7]) and it is shown to be a powerful

tool in several applications.

Recently we have proposed the same problem in Approx-

imation Theory i.e., is the linear structure the only one that

can be used in the classical Approximation Theory? More-

over, are the addition and multiplication of the reals the only

operations that can be used for defining approximation op-

erators? All the approximation operators need to be linear?

The answer to these questions is negative, and in this sense in

[2] max-product Shepard approximation operators are stud-

ied. Also, in [3] Pseudo-Linear Approximation Operators are

studied from the theoretical point of view.

In the present paper we will use pseudo-additions based

on an additive generator and pseudo- multiplications based

on the same (but multiplicative) generator. For such a pair

of operations the distributivity property holds. Such pseudo-

operations can be e.g. a uninorm and an absorbing norm ([9]).

We will show that other pairs of pseudo-operations can be

considered.

We will focus on the possibility to define and use in Im-

age Processing a Haar-type wavelet based on pairs consisting

of pseudo- operations. Also, we give in the present paper a

multi-channel image decomposition based on pseudo-linear

Haar wavelets. Wavelets are used usually for providing a

decomposition of an original image and after the decompo-

sition is performed, further processing is possible, depend-

ing on different application purposes. So, in the present pa-

per we present a new image decomposition method based on

pseudo-linear Haar wavelets. A decomposition is made cor-

rectly only if it has the perfect reconstruction property. In the

present paper it is shown that the perfect reconstruction prop-

erty holds. On the other hand the decompositions presented

are different than the usual methods based on the classical

Haar wavelets and the decomposition operators are non-linear

(being pseudo-linear).

After a section in which we describe the algebraic struc-

ture, in Section 3 we present pseudo-linear Haar type wavelets.

In Section 4 we present some numerical results which show

the effectiveness of the proposed method. At the end of the

paper some conclusions and topics for further research are

given.
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2. PSEUDO-OPERATIONS

Let [a, b] be closed subinterval of [−∞, +∞] (in some cases

semiclosed subintervals will be considered) and let � be to-

tal order on [a, b]. Structure ([a, b],⊕,�) is a semiring if the

following hold:

• ⊕ is pseudo-addition, i.e., a function ⊕ : [a, b] ×
[a, b] → [a, b] which is commutative, non-decreasing

(with respect to �), associative and with a zero element,

denoted by 0;

• � is pseudo-multiplication, i.e., a function � : [a, b]×
[a, b] → [a, b] which is commutative, positively non-

decreasing, associative and with a unit element denoted

by 1;

• 0 � x = 0;

• x � (y ⊕ z) = (x � y) ⊕ (x � z).

Semirings with continuous (up to some points) pseudo-

operations are divided into three classes. The first class con-

tains semirings with idempotent pseudo-addition and non idem-

potent pseudo- multiplication. Semirings with strict pseu-

do-operations defined by monotone and continuous genera-

tor function form the second class, and semirings with both

idempotent operations belong to the third class.

2.1. Uninorms and absorbing norms

For the purpose of this construction we shall consider a semir-

ing of the second class on the unit interval, i.e. ([0, 1],⊕,�).
As a pseudo-addition ⊕ : [0, 1]2 → [0, 1], the representable

uninorm with neutral element e ∈ (0, 1) will be used. In this

case, for given e ∈ (0, 1) and a strictly increasing continuous

function g : [0, 1] → R such that g(0) = −∞, g(e) = 0 and

g(1) = +∞, operation ⊕ is

x ⊕ y = g−1(g(x) + g(y)), (1)

for all (x, y) ∈ [0, 1]2\{(0, 1), (1, 0)}. If (x, y) ∈ {(0, 1), (1, 0)},
one of the following conventions will be accepted: either 0 ⊕
1 = 1 ⊕ 0 = 0 or 0 ⊕ 1 = 1 ⊕ 0 = 1.

A uninorm U : [0, 1]2 → [0, 1] is a commutative, associa-

tive and increasing binary operator with a neutral element e ∈
[0, 1] (see [9]). Now, corresponding pseudo-multiplication �
is

x � y = g−1(g(x)g(y)), (2)

and, for previously described generating function g, it belongs

to the class of so-called absorbing norms.

An absorbing norm � : [0, 1]2 → [0, 1] is a commutative,

associative and increasing binary operator with an absorbing

element a ∈ [0, 1], i.e. (∀x ∈ [0, 1])(x � a) = a). ([1])

Some of the basic properties of operations (1) and (2) are:

(i) � is an absorbing norm with e as absorbing element;

(ii) 1 = g−1(1);

(iii) for all x ∈ (0, 1) there exists 	x ∈ (0, 1) such that

x ⊕ (	x) = 0.

Since 	x = g−1(−g(x)), the pseudo-subtraction for all

(x, y) ∈ [0, 1]2 \ {(0, 1), (1, 0)} can be given in the following

form:

x 	 y = x ⊕ (	y) = g−1 (g(x) − g(y)) . (3)

As generators for the uninorm and absorbing norm we can

use e.g.,

g(x) = ln
xa

1 − xα
, (4)

which generates a parametric family of operations. The neu-

tral element of the uninorm in this case is 1

2
1
α

. This parametric

family, for α = 1 contains the famous 3 PI operation.

2.2. Another class of generated pseudo-operations

In the present subsection we describe some pairs of generated

pseudo-operations on the real line which can be used in the

construction of pseudo-linear Haar wavelets.

Let us consider now the following simple family of strictly

increasing generators

g : R → R, g(x) = sign(x) |x|α , (5)

where α > 0. The pseudo-addition determined by these gen-

erators is a Minkowski-type addition, while the pseudo- mul-

tiplication is the usual multiplication of te reals. It is interest-

ing to remark that if we consider α → ∞, for x, y > 0 this

operation coincides with the maximum, while for x, y < 0
this operation coincides with the minimum.

3. PSEUDO-LINEAR HAAR WAVELETS

3.1. One-dimensional case

We define in the present section a Haar-type wavelet based on

a pair consisting of generated pseudo-operations.

Given an input signal x : Z → R, we split it into x0(n)
and x1(n) the odd and even samples. The classical two-

channel Haar wavelet transform is given by the Analysis and

Synthesis operations based on a perfect reconstruction condi-

tion.

3.1.1. Analysis:

The analysis operation gives the highpass and lowpass sub-

band samples as:(
x0(k)
x1 (k)

)
→

(
y0(k)
y1(k)

)
,

where (
y0(k)
y1(k)

)
=

(
x0(k)+x1(k)√

2
x0(k)−x1(k)√

2

)
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3.1.2. Synthesis:

We apply the same operation as in analysis step to the signal

y, and it is easy to check that we reobtain the original signal

x.

Let us now propose the pseudo-linear version of the above

described Haar wavelet.

3.1.3. Analysis:

The analysis operation gives the highpass and lowpass sub-

band samples as a pseudo-linear transformation:

(
x0(k)
x1 (k)

)
→

(
y0(k)
y1(k)

)
,

where

(
y0(k)
y1(k)

)
=

⎛
⎝ (x0(k) ⊕ x1(k)) � g−1

(
1√
2

)
(x0(k) 	 x1(k)) � g−1

(
1√
2

)
⎞
⎠

3.1.4. Synthesis:

We apply the same operation as in analysis step to the signal

y, and it is easy to check that we reobtain the original signal

x. Indeed, it is easy to see that

(y0(k) ⊕ y1(k)) � g−1

(
1√
2

)
= ((x0(k) ⊕ x1(k)) ⊕ (x0(k) 	 x1(k)))

� g−1

(
1√
2

)
� g−1

(
1√
2

)

= (x0(k) ⊕ x0(k)) � g−1

(
1
2

)
= x0(k).

and that

(y0(k) 	 y1(k)) � g−1

(
1√
2

)

= ((x0(k) ⊕ x1(k)) 	 (x0(k) 	 x1(k))) � g−1

(
1
2

)

= (x1(k) ⊕ x1(k)) � g−1

(
1
2

)
= x1(k).

3.2. Bidimensional case

As the classical bidimensional linear Haar transform is ob-

tained by applying two times the one dimensional transform

on horizontal and vertical directions, the pseudo-linear case

will be similar. We define in what follows the 4-channel

pseudo-linear Haar wavelets in two dimensions.

3.2.1. Analysis

The analysis operation is given as follows:

x(2n) x(2n+)
x(2n+) x(2n+

+)
−→
←−

ψ(n) ωh(n)
ωv(n) ωd(n) ,

where

ψ(n) = (x(2n) ⊕ x(2n+) ⊕ x(2n+) ⊕ x(2n+
+)) � g−1

(
1
2

)

ωh(n) = (x(2n) ⊕ x(2n+) 	 x(2n+) 	 x(2n+
+)) � g−1

(
1
2

)

ωv(n) = (x(2n) 	 x(2n+) ⊕ x(2n+) 	 x(2n+
+)) � g−1

(
1
2

)

ωd(n) = (x(2n) 	 x(2n+) 	 x(2n+) ⊕ x(2n+
+)) � g−1

(
1
2

)
.

3.2.2. Synthesis

The synthesis operation is as in the classical case the same as

the analysis operation, but applies to the result of the analysis

operation. It is easy to check that the perfect reconstruction

requirement is satisfied.

4. IMAGE PROCESSING EXPERIMENTS

We perform in this section multichannel image decomposi-

tion by using pseudo-linear Haar wavelets. In the first experi-

ment we have considered a pair of a uninorm and correspond-

ing absorbing norm, defined as above. These experiments

show us the possible usefulness of the proposed method as

an alternative to Haar wavelets.

In the following experiments image Lenna is decomposed

until the second decomposition level by using the same gen-

erator (4) for different values of the parameter a (see Figs. 1,

2). The upper left corner corresponds to the component ψ,

while the lower left, lower right and upper right correspond

to ωv, ωd, ωh respectively of the pseudo-linear Haar wavelet.

Since the exact reconstruction of the original Lenna image is

possible by using the given image decomposition results and

the pseudo-linear Haar wavelet again, the effectiveness of the

proposed method is shown.

It is interesting to observe that the basic color in the lower

components increases together with the value of the parame-

ter. This is due to the fact that the color in the lower compo-

nent should be near to the null element of the operation.

In the second experiment the decomposition of the im-

age Lenna is performed by using a pair of generated pseudo-

operations as in (5). The image decomposition result is shown

in Fig. 3.
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Fig. 1. Multichanel decomposition of the image Lenna based

on the proposed method, parameter of the uninorm-absorbing

norm a = 1
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Fig. 2. Multichanel decomposition of the image Lenna based

on the proposed method, parameter of the uninorm-absorbing

norm a = 2

5. CONCLUSIONS

Several classes of pseudo-linear Haar-type wavelets were pro-

posed. The theoretical study shows that the main properties

such as the perfect reconstruction property, are conserved.

The presented decomposition method is non-linear (being pseu-

do -linear) and it is different than the usual wavelets. The

results show that a pair consisting of a pseudo-addition and

a pseudo-multiplication can be used in Image processing as

alternatives of sum and product operations.

As topics for future research let us mention the use of

the proposed Haar-type wavelets for feature extraction, noise

reduction or debluring of images. Surely, JPEG 2000 com-

pression standard uses more sophisticated wavelets and their

study is subject of future research together with the study of

their application to image and video compression.
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Fig. 3. Multichannel decomposition results by using the gen-

erator in (5), parameter α = 4
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