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ABSTRACT

Texture feature extraction is widely used in content-based 
image retrieval (CBIR) and is not efficient to be 
implemented directly in the pixel domain due to high 
information redundancy and strong correlations in raw 
images. It is well known that low-frequency coefficients of 
the Discrete Cosine Transforms (DCTs) preserve the most 
important image features. In this paper, we use Multi-level 
DCTs (MDCTs) to generate image texture feature vectors 
for the purpose of CBIR. The texture feature vectors 
generated from MDCTs coefficients and Zernike moments 
are classified by Support Vector Machines (SVMs). The 
experimental result shows good average retrieval accuracy. 
It also shows that DCT coefficients from low level 
resolution images are sufficient to extract image texture 
feature with significant less computing cost. 
 
Index Terms— Multi-level Discrete Cosine Transform, 
CBIR, Feature Extraction, Zernike Moments, SVMs

1. INTRODUCTION 
 
In image retrieval, image features such as texture, shape, 
spatial layout and color are used to specify queries.     
Texture contains important information about the structural 
arrangement of surfaces and their relationship to the 
surrounding environment [1]. Texture is the most important 
visual cue in identifying a variety of materials. It can be 
used in, for example, remote sensing to obtain the boundary 
map separating the differently textured regions, and image 
compression where synthesis texture may replace 
backgrounds in natural scenes thus leading to a dramatic bit 
saving [2].  
A variety of techniques, ranging from statistical methods to 
multi-resolution filtering have been developed for texture 
analysis. Two-dimensional Gabor Filter as one of the 
multiresolution filtering techniques, is proved to be very 
useful in texture analysis and is widely adopted in the 
literature [3][4][5][6]. Manjunath and Ma [3] have shown 
that image retrieval using Gabor Filter outperforms that 
using various wavelets transform, including orthogonal and 
bi-orthogonal wavelet transform, and tree-structured 
wavelet transform. However, the computational cost of 

using the above wavelet transforms is expensive for image 
retrieval. Normally, the retrieval mechanisms make 
similarity measure by contrasting the features of the query 
image and the features from the images in the database. An 
efficient as well as simple feature extraction scheme is 
obligatory for real-time image retrieval. 
It is well known that low-frequency coefficients of the 
Discrete Cosine Transforms (DCTs) preserve the most 
important image features. In this paper, we use Multiple- 
level DCT (MDCT) coefficients to create texture feature 
vectors. The texture feature vectors generated from MDCT 
coefficients and Zernike moments are trained and classified 
by Support Vector Machines (SVMs), which have 
demonstrated powerful and promising generalization 
abilities in image processing and other classification 
applications.  
The rest of the paper is organized as follows. Section 2 
discusses image texture features and feature extractions 
from MDCTs. Zernike moments are also introduced in this 
section. Section 3 discusses the basic concepts of SVMs and 
how to use them in our classification and retrieval schema. 
Experimental results and conclusions are outlined in Section 
4. 
  

2. TEXTURE FEATURE EXTRACTION AND 
MULTI-LEVEL DISCRETE COSINE TRANSFORM 

 
The discrete cosine transform (DCT) is often used in signal      
and image processing, especially for lossy data 
compression. The excellent energy compaction property of 
the DCT is the main reason for its popularity. This property 
enables most of the signal information to be concentrated in 
a few low-frequency components of the DCT [7] [8].  Smith 
and Chang [9] compared several subband-energy features 
which can be used for texture classification. In [10], Huang 
introduced   extracting texture features directly from the 
DCT coefficients in the DCT-code image.  
 
2.1. DCT Coefficients as Image Texture Features 

The process of image classification using DCT coefficients 
can be summarized as follows: An input image is 
partitioned into sub-blocks with the size of N × N.  DCT is 
performed on each block. There are total N 2 coefficients 
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within each block and the variance and mean values of each 
coefficient among the blocks are calculated to generate 2N 2 
features. The 2N 2 feature vectors generated by the training 
images are mapped into a reduced space using Fisher 
Discriminant Analysis, which works by finding the 
eigenvectors of scatter matrices. A subset of the resulting 
eigenvectors that account for the largest total variation is 
used to assign new texture image to the nearest classes. 
 
2.1. Multi-level Discrete Cosine Transform 

In this paper, we use MDCT coefficients which are derived 
from the same image with different resolutions and Zernike 
moments of the images to create image texture feature 
vectors. We define the 1-D Multi-level Discrete Cosine 
Transform as: 
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where k [0, 12L
N ] for any level L , L [0, N2log -1].  

From (1), we can see that MDCTs with different level L is 
the DCTs of the same signal with a different resolution. 
When L equals to 0, MDCT is the standard form of DCT-II. 
This formula can be extended to 2-D images since 2-D DCT 
can always be implemented by first applying a 1-D DCT on 
all rows, followed by a 1-D DCT on all columns from the 
result of the first step. To calculate MDCT of an image in 
Matlab, we can simple apply dct2 function to the original 
image which has be been resized with the compression 
factor of l2 . 
The multi-resolution DCTs presented here are derived in the 
hope that they can represent the image texture features from 
its low resolution such that the processing time will be 
significantly reduced. For example, the total computing cost 
of MDCT2 and MDCT4 is about 

4
1  and 

16
1  of standard DCT 

when applying to an image.  
Secondly, in some cases, MDCT may detect the difference 
of the image texture features resided in two images while 
the standard DCT fails to do so. For example, suppose we 
want to distinguish the following two images shown in Fig.  
1, both have a size of 64 by 64:  
 

 
                    (a)                                                 (b) 
 
Fig. 1. (a) Square image, dark and gray even divided 
           (b) Stripe image, stripe size: 4 by 64 

 
                (a) pure black             (b) pure gray            (c) stripe block 
 
Fig. 2.  Three 4 by 4 image blocks. 
 
We divide both images into 4 by 4 blocks as mentioned in 
[9]. As a result, both images have two kinds of 4 by 4 
blocks: pure dark and pure gray as shown in Fig. 2a and 2b. 
In this case, we do not have to go through calculating the 
DCT coefficients before we can tell that the feature vectors 
extracted from the two images are identical, since both 
contain the same 128 black blocks and 128 gray blocks. 
Alternatively, we can use MDCT2 to fetch the feature 
vectors. As we discussed above, implementing MDCT2 is 
same as implementing standard DCT-II on the low 
resolution images with the compression ratio of 2. The low 
resolution images are similar to the ones in Fig. 1 with the 
exceptions: both images have a reduced size of 32 by 32; 
stripe size in Fig. 1b decreases to 2 by 32.  Since we still use 
4 by 4 sub-bands, we can see, Fig. 1a is divided into 
dark/gray blocks and Fig. 1b is divided into blocks of half 
gray and half dark as shown in Fig. 2c.  When we apply 
DCT to the blocks in Fig. 2a, 2b and 2c, we can expect all 
zero values of the AC coefficients in Fig. 2a and 2b since 
‘no-change’ occurs in these two blocks. There must be non-
zero AC coefficients in the block of Fig. 2c. Thus, the 
feature vectors extracted from Fig. 1a and 1b by using 
MDCT2 will be different and be able to be used to 
distinguish one from the other. 
 
2.2. Image feature from Zenike Moments 

We also use Zenike Moments(ZM) to extract image features 
in this approach. Zernike moments have many desirable 
properties, such as rotation invariance, robustness to noise, 
expression efficiency. The complex ZM are derived from 
Zernike polynomials which are a set of complex, orthogonal 
polynomials defined over the interior of a unit circle 
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where n is a non-negative integer, m is an integer such that 

n-|m| is even and |m| n, 22 yx , and 

x
y1tan  

Projecting the image function onto the basis set, the Zernike 
moments of order n with repetition m is given by:  
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It has been shown that the ZM on a rotated image have the 
same magnitudes. Therefore || nmA  can be used as a 
rotation invariant feature of the image function.  It has also 
been shown in [11] that a ZM order of 4 or 6 are suitable for 
image feature description. In this paper 9 ZM moments are 
included in the feature vectors. 
 

3. IMAGE FEATURE TRAINNING AND 
CLASSIFICATION USING SVM 

SVMs are used to train the image feature vectors to classify 
different texture images. Given a testing image, SVMs will 
predict its texture class based on its texture feature vector. 
This process involves binary classification and mulit-class 
classification. 
 
3.1. Binary Classification 
 
Assume there is a training data set S: N

iii yx 1)},{( , where 

each input m
ix and output }.1{iy  The goal of 

SVMs is to find an optimal hyperplane 0bzw  in a 
feature space, which can be transformed from the input 
vector space x by mapping )(xz , and separate the 
training data into two classes with the maximum margin in 
the feature space, where i

N

i ii zyw
1

, i is a set of 

Lagrange multipliers to the following dual problem [12]: 
 Maximize:  N
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where C is a user-defined regularization parameter, 
determining the tradeoff between maximizing margin and 
minimizing the number of training examples misclassified. 
It is useful to handle non-separable problems and outliers.  
The examples xi with i > 0 are called support vectors. They 
lie close to the decision boundary. If support vectors are 
removed, the separating hyperplane would be changed.  
The kernel trick of SVMs allows us to substitute the dot 
product of data points in (2) with just a kernel function: 

jiji zzxxK )(   (6) 
The decision function is made by computing 
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Several kernel functions have been used widely and 
successfully, such as, polynomial kernel with degree d,
 d

jiji xxxxK )1(),(  (8) 

Gaussian RBF kernel with parameter , 
 22

2/exp),( jiji xxxxK  (9) 

and sigmoid kernel with parameter ,  
)tanh(),( jiji xxxxK  (10)  

 
3.2. Multi-Class Classification 
 
SVMs are designed for binary classification. K-class 
classification problems can be solved using a k-class SVM 
which constructs a decision function by considering k 
classes altogether [13]. K-class classification problems can 
also are reduced to a collection of binary classification 
problems through several strategies, among which one-
versus-rest strategy [13] and pairwise strategy [14] are often 
used.  
The one-versus-rest method constructs k binary classifiers, 
one for each class. The nth classifier constructs a decision 
boundary between class n and the k - 1 rest classes. A 
testing example is classified in the class for which the 
distance from the margin in the positive direction is 
maximal [13].  
The pairwise strategy creates 2

)1(kk classifiers, one for 
each pair of classes. A majority voting is applied to make a 
decision for a testing example [14]. 
The comparison study in [13] shows the methods above to 
solve multi-class classification problems produce roughly 
similar accuracy. 
 
4. EXPERIMENTAL RESULTS AND CONCLUSIONS 

 
We use a texture database including 9 texture classes, 40 
samples each. All images are in grayscale JPG format, each 
640 by 480 pixels [15]. Each feature vector is composed of 
41 image texture features among which 32 are derived from 
DCT coefficients and 9 from the ZMs. For each texture, 35 
samples are used as training data in SVM and 5 samples are 
used as testing data.  
 

 
 
Fig.3. Experimental texture database.  
 
We chose one-versus-rest method introduced in the section 
3.2 to classify 9 textures, since it constructs much less 
classifiers than pairwise method (9 vs. 36 classifiers) but 
still can achieve good performance. 
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The image data are classified using SVMlight developed by 
Joachims [16]. We chose RBF kernel with the parameter
of 0.001. The regularization parameter C is set to 1. Table 1 
shows the testing accuracies of 9 classifiers for the image 
data with the different levels of resolutions. The last row 
shows the testing accuracies by combining the decisions 
from 9 classifiers. 
 

TABLE I 
SVM TESTING ACCURACIES (%) OF 9 CLASSIFIERS USING ONE-VERSUS-

REST METHOD FOR THE TEXTURES WITH DIFFERENT RESOLUTIONS 

 
 
From Table 1 we can see that there is no apparent difference 
among the average binary classification accuracies when 
different image resolutions applied.  The combined 
accuracies in the last row, which result from the one-versus-
rest method, do show an interesting phenomenon: multi-
class classification of texture images with low resolution 
achieves better classification accuracy.  
In this paper, we define a multi-level DCT which applies 
DCT on the same signal with different levels of resolutions. 
MDCT coefficients combined with 9 Zernike Moments are 
used by SVMs for texture image classification. The 
experimental results suggest that texture image features 
extracting from its low resolution images by MDCT achieve 
both higher classification accuracy and less computing cost. 
This result coincides with the case we described in section 
2.1 where a low resolution image can remove the redundant 
information resided in the image. This is especially true for 
the texture image with high resolution in which pixel 
intensity changes so slowly that the AC coefficients are all 
the zeros in most of blocks. In this case, image features will 
be mainly reflected by its DC component and the mean and 
standard deviation of the AC coefficients among blocks will 
be too ‘flat’ to distinguish themselves from the other texture 
classes.   
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Classifier # .125 .25 .5 .75 1 
1 95.6 95.6 97.8 97.8 100 
2 91.1 95.6 97.8 97.8 97.8 
3 97.8 100 95.6 95.6 95.6 
4 100 100 100 100 100 
5 95.6 95.6 97.8 97.8 97.8 
6 100 100 100 100 100 
7 91.1 91.1 100 100 91.1 
8 88.9 91.1 95.6 95.6 95.6 
9 100 93.3 93.3 93.3 93.3 

Combined 93.3 91.1 86.7 82.2 82.2 
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