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ABSTRACT

In this paper we propose a locally adaptive image threshold 
technique via variational energy minimization. The novelty 
of the proposed method is that from an image it 
automatically computes the weights on the data fidelity and 
the regularization terms in the energy functional, unlike 
many other previously proposed variational formulations 
that require manual input of these weights by laborious trial 
and error. To achieve the automatic setting of the weighting 
parameters we propose a non-linear convex combination of 
the data fidelity and the regularization terms in the energy 
functional and seek the optimum threshold surface via 
minimax principle. Our choice of the novel energy 
functional allows fast computation of the unique minimax 
solution. As a specific segmentation application, the 
proposed technique shows promising results when applied 
to find lung boundary from MR imagery. Illustrative 
examples are also provided where the proposed method is 
observed to retain texture information better than other 
competing methods. 
Index Terms— minimax solution, variational technique. 

1. INTRODUCTION 

Thresholding is the operation of converting a grayscale 
image into a binary image. Thresholding is a widely applied 
preprocessing step for image segmentation. Often the 
burden of segmentation is on the threshold operation, so that 
a properly thresholded image leads to better segmentation. 
There are mainly two types of thresholding techniques 
available: global and local. In the global thresholding 
technique a grayscale image is converted into a binary 
image based on an image intensity value called global 
threshold. All pixels having values greater than the global 
threshold values are marked as 1 and the remaining pixels 
are marked as 0. In local thresholding technique, typically a 
threshold surface is constructed that is a function on the 
image domain. 
      Otsu proposed a global image thresholding technique 
where the optimal global threshold value is determined by 
maximizing the between–class variance with an exhaustive 
search [6].  Although Otsu’s method remains one of the 
most popular choices for global thresholding techniques, it 

does not work well for many real world images where a 
significant overlap exists between the pixel intensity values 
of the objects and the background for un-even and poor 
illumination.  
     On the other hand, local thresholding method where the 
thresholding operation depends on local image 
characteristics is superior to the global ones for poorly 
illuminated images. Niblack proposed a local thresholding 
technique based on the local mean and local standard 
deviation [5]. The drawback of this algorithm is the 
determination of the size of the neighborhood that is set by 
the user and it depends on the content of the images. The 
window size should be small enough to preserve the local 
details and at the same time, it should be large enough to 
suppress noise. 
     Yan et al. proposed a multistage adaptive thresholding 
method where they introduce two global thresholds [9]. 
Pixels having gray values lower than the low threshold 
value are classified as the background. Pixels with intensity 
greater than the high threshold value are classified as 
objects. Next, the pixels having gray values in between the 
two threshold values are classified based on local image 
statistics of mean and variance within a variable 
neighborhood. The two global thresholds can be derived 
using Otsu’s multilevel threshold with exhaustive search 
technique or percentile statistics. The determination of the 
window size of the neighborhood is once again an ad-hoc 
procedure here.
     Liu et al. introduced an active surface model based local 
thresholding algorithm [4]. They proposed a repulsive 
external force by which the threshold surface is pulled away 
from the image surface everywhere except at high gradient 
locations or edges. The drawback of this model is the 
presence of two tuning parameters, which are typically 
determined by an ad-hoc trial and error method. A recent 
survey on image thresholding accounts for most of the 
methods available to date [8]. 
     Incidentally, it is noted that these local thresholding 
techniques have hand tuning parameters that need to be 
adjusted for differently illuminated images and the values of 
these parameters vary significantly for different images. 
However, we propose here an automated adaptive local 
image thresholding method where no manually-adjusted 
weighting parameter is present for the data and the 
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regularization terms in the energy functional. We have 
proposed a novel variational energy functional consisting of 
a non-linear combination of a data and a regularization term. 
The energy functional is a function of the threshold surface, 
the image, as well as the weighting parameter, which makes 
a balance between the data and the regularization terms.  A 
minimax solution of the proposed energy functional is 
obtained iteratively by alternating minimization and 
maximization of the energy functional respectively with 
regard to the threshold surface and the weighting parameter. 
Our proposed minimax scheme finds the weighting 
parameter value by maximizing the energy functional while 
keeping threshold function fixed and finds the threshold 
surface function by minimizing energy functional while 
keeping the weighting parameter fixed at each iterative step. 
The solution converges to a unique state where the optimal 
values of the threshold surface and the weighting parameter 
are achieved.
       The automated weighting parameter makes an 
appropriate balance between the effect of data term and 
regularization term on energy functional in the minimax 
sense and prevents each term to dominate over the other. 
The data term is edge sensitive and it leads to proper 
segmentation even when clear modes for objects and 
background in the gray level histogram are absent i.e., there 
is no clear sign of different peaks and valleys in the gray 
level histogram representing the existence of a gray level 
threshold to threshold the image based on its pixel intensity 
values.  
       The energy functional is chosen in such a way that it is 
concave with respect to the weighting parameter and convex 
with respect to the threshold surface so that iterative 
minimax method can be applied to the energy functional to 
find the optimal threshold function automatically without 
any manually tuned weighting parameter. Gennert and 
Yuille proposed a minimax method for multi-component 
energy functional [3]. However, they proposed a Fibonacci 
search technique to find the optimal value of the weighting 
parameters that is computationally expensive, because of the 
minima computation of the energy functional a number of 
times– each time with different weighting parameter values. 
We deliberately avoid multiple minima computation by 
making the energy functional convex with respect to the 
threshold surface. Our proposed iterative scheme reaches to 
the global minima after a few iterations. 

2.  PROPOSED VARIATIONAL MINIMAX METHOD 

Let the image and threshold surface function be denoted by 
I(x, y) and T(x, y) respectively. Then the proposed energy 
functional is as follows:  
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and ]1,0[  is the weighting parameter. The first energy 
component E1 is edge sensitive as it encourages the 
threshold surface T to intersect the image surface I where 
the value of the edge indicator function g(x, y) is large. E2 is
the regularization term with the L2 norm that enforces 
smoothness in the threshold surface. The value of the 
exponent q can be generally chosen to be 2 as usually done 
in the image processing literature to indicate edge strength. 
However it can also be experimentally determined for a 
specific application. A typical behavior of the proposed 
energy functional has been illustrated in Fig.1, where it is 
observed that desired threshold profile follows the image 
profile in such a way that they meet only at high gradient 
places or equivalently at the edges of the desired objects to 
be segmented. 

Fig.1. Image intensity profile and optimal threshold surface 
profile. The dark line represents the threshold surface profile and 
light one represents the image profile.  

     In order to compute the optimum threshold surface, we 
seek the minimax solution );(minmax TE

T
 for the energy 

functional (1). Here, E is a concave function in  and a 
convex functional in T. Because of this convex-concave 
nature of E, to find the minimax solution we can 
interchange the order of the max and the min operations to 
obtain: 
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Thus, we first differentiate E in (1) with respect to  and 
find the maximum value *  by equating the derivative to 
zero:
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Then, we minimize E via gradient descent equation for T 
keeping this value *  for  be fixed: 
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     The algorithm Variational Minimax iteratively solves the 
minimax problem: 
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             Algorithm Variational Minimax 
Initialize: IT
While convergence/maximum iterations not 
reached
         Compute E1(T) and E2(T) via equation (2) 
         and (3) 
  Compute:       
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         Update T via equation (6) 
End while

3. NUMERICAL IMPLEMENTATION 

The gradient descent equation (6) is a parabolic equation 
characterized by the heat equation with a source term 

)(2* TII [2]. We have discretized and implemented (6) 
using explicit numerical scheme as follows: 
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Where  is the time step size of the iterative numerical 
scheme. In the explicit scheme, the finite difference analogs 
for T2 are written in known time level indexed by t.
Convergence analysis shows that the step size ( ) should be 
less than or equal to 0.25 [2]. 

              4. RESULTS AND DISCUSSIONS 

We have applied the proposed edge sensitive variational 
minimax thresholding algoritm to find out the lung 
boundaries in proton MRI slices shown in Fig.2(a). The 
value of edge indicator’s exponent q has been found 
experimentally. The experimental result is displayed in Fig. 
3. Here the value has been chosen 8 as it shows consistently 
better segmentation score on a series on proton MRI slices. 
From Fig.3 it is observed that initially the Pratt’s figure of 
merit (PFOM) [1] (defined shortly after) increases as the 
value of q increases and it stabilizes at q =6. If the value of 
q is increased without bound, g(x, y) will tend to zero for 
most pixel locations (x, y) and consequently the effect of 
edge sensitive data term on energy functional (1) decreases. 
Then the regularization term dominates over the data term. 
With the negligible data fidelity term the solution turns out 
to be that of an isotropic heat equation and will essentially 
be a global threshold value. Thus we limit the value of the 
exponent as 8. To find the two lung cavities/lung boundaries 
in the thresholded binary image of Fig. 2(b) we first obtain 
the largest and the second largest black connected 
components from the middle portion of the image. Next, 
morphological operations are used to eliminate any 
remaining small white connected component within the lung 
cavity. Further, any possible extraneous portions connected 

to the lung cavities via “necks” are also eliminated by 
morphological operations. Same parameter setting (such as 
area threshold and neck width) in the morphological 
operations has been used for all the data sets. The results of 
Otsu and Fuzzy c-means algorithm are shown in  Fig. 2(c) 
and 2(d) respectively.   

 (a) Original proton  image         (b) Proposed method 

     (c) Otsu’s method               (d) Fuzzy c-means 
       Fig.2.  Thresholded Binary lung Image.  

MRI 
data 
sets

PFOM value 
(proposed method) 

PFOM value   
(Ray et al.’s
method [7]) 

1 0.7586 0.7156 

2 0.7546 0.7120 
3 0.755 0.7085 

Table 1. Pratt’s figure of merit comparison  
     To measure the quantitative evaluation of our 
segmentation results we have calculated PFOM. PFOM is a 
subjective edge evaluation which is defined as: 

AI

iAI idII
F

1
21

1
,max

1

where, II and IA are the number of ideal and actual edge 
pixels, d(i) is the pixel miss distance of the ith edge pixel 
detected, and  is a scaling constant chosen to be 1/9 to 
provide a relative penalty between smeared edges and 
isolated, but offset, edges [1]. PFOM is a dimensionless 
number between 0 and 1. The maximum value of PFOM is 
1 for ideal segmentation. To calculate PFOM we need the 
information of ideal edges which is computed based on 
ground truth. We have carried out automated segmentation 
in three MRI data sets. The PFOM results of all MRI slices 
over the three data sets are shown in Fig.4. Table 1 
summarizes the average value of PFOM of all three data 
sets and it compares the results found by Ray et al.’s active 

VI - 39



contour method [7]. Results found by our method shows 
superiority of the quality over the results of [7]. 

Fig.3. PFOM for different values of q is shown. Different lines 
represent PFOM for different MRI slices.

Fig 4. PFOM for our proposed method on lung data sets.
     We have applied the proposed method on 512 x 512 
grayscale Barbara image, and the result is shown in 
Fig.5(a). Here, the value of q is taken as 1.5. We have 
implemented Liu et al.’s method on the Barbara image and 
we have chosen the two tuning parameters of their method 
= 16, w = 1 from their article [4]. We have also 
implemented Otsu’s global thresholding and fuzzy c-means 
on the same image as shown in Fig.5. The proposed method 
is observed to better preserve the texture. 

5. SUMMARY AND FUTURE WORK 

We have proposed a manually tuned weighting parameter 
free novel variational adaptive image thresholding 
technique. Our proposed novel energy functional is made of 
a non-linear convex combination of an edge sensitive data 
term and a regularization term. The edge indicator function 
used in our energy functional has an exponent as a 
parameter. The value of this exponent is found 
experimentally and we indicated its connection with 
isotropic heat equation leading to global threshold. The 
optimal values of the threshold function and the weighting 
parameter are determined by an iterative minimax method. 
Our proposed novel technique has been successfully applied 
on MRI slices for the purpose of finding lung boundaries. 
The proposed method is observed to preserve texture and 
details better than other competing techniques. 
     In the future, we would like to concentrate on how to 
automatically set the value of the exponent q from the image 
data itself. 

   (a) Proposed method     (b) Liu et al.’s method 

(c )    Otsu’s method         (d) Fuzzy c-means. 
                       Fig.5. Thresholded Barbara image. 
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