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ABSTRACT
In this paper, we propose a general two-dimensional hidden
Markov model (2D-HMM), where dependency of the state
transition probability on any state is allowed as long as causal-
ity is preserved. The proposed 2D-HMM model can capture,
for example, dependency among diagonal states, which can
be critical in many image processing applications. A new
Expectation-Maximization (EM) algorithm suitable for esti-
mation of the new model is derived, where a novel General
Forward-Backward (GFB) algorithm is proposed for recur-
sive estimation of the model parameters. A new conditional-
independent subset-state sequence structure decomposition is
proposed for the 2D Viterbi algorithm. The new model can be
applied to many areas such as trajectory classification and im-
age segmentation. Application to aerial image segmentation
shows the superiority of our model compared to the existing
2D-HMM model.

Index Terms— Image classification, HiddenMarkovmod-
els, Image segmentation.

1. INTRODUCTION

In most block-based image classification algorithms, feature
vectors are generated for each image block. Classification
decisions are made independently for each block based on
feature information. The performance of such algorithms is
limited since context information between blocks is lost. J. Li
et al. [1] proposed a two-dimensional hidden Markov model
for image classification, where state transition probability for
each block is conditioned on the states of nearest neighboring
blocks from horizontal and vertical directions. However, the
context information that a block depends on may arise from
any direction and from any of its neighbors as shown in Fig.
1(a). Thus, the existing two-dimensional model will only cap-
ture partial context information. Generalization of the hidden
Markov model (HMM) framework to represent state depen-
dencies from neighbors in all directions is unsolvable since
such a model will be non-causal. In this paper, a general two-
dimensional hidden Markov model (2D-HMM) is proposed.

This work is funded in part of funding from NSF IIS-0534438.

The context information in the proposed model is restricted to
neighbors which ensure the causality of the model as shown
in Fig. 1(a). For simplicity, the presentation in this paper
will focus primarily on a special case of the general 2D-HMM
model, where dependencies arise from adjacent diagonal, hor-
izontal and vertical neighbors for each block as shown in Fig.
1(b). The main challenge is that the existing methods can not
be used to solve the proposed model. We must therefore de-
rive new algorithms for training, estimation and classification,
i.e. (1) Newly derived Expectation-Maximization (EM) algo-
rithm; (2) General Forward-Backward (GFB) algorithm; (3)
2D Viterbi algorithm suitable for the structure of the proposed
model.
The rest of paper is organized as follows: In Section 2, we

provide a mathematical formulation of the proposed model.
Section 3 will discuss proposed algorithms for 2D-HMM train-
ing and classification. Experimental results of the proposed
model for the segmentation of aerial images are demonstrated
in Section 4. We finally conclude in Section 5.

2. PROPOSED TWO-DIMENSIONAL HIDDEN
MARKOVMODEL (2D-HMM)

The proposed model follows the assumptions below:

Assumption 1 The transition probability of state s(i, j) in
the model depends on its adjacent neighboring states in ver-
tical, horizontal and diagonal directions.

Suppose there areM states {1, 2, ..., M}, and for each block
(i, j), i = {1, 2, ..., I}; j = {1, 2, ..., J}, where I and J are
the numbers of row and column blocks in the original image,
the feature vector is o(i, j), the corresponding hidden state is
s(i, j), and the class of the block is c(i, j). We define the
transition probability of state s(i, j) and it depends on its ad-
jacent neighboring states in vertical, horizontal and diagonal
directions, as shown in Figure 1(b), and is stated as follows:

P{s(i, j) = l|s(i−1, j) = m, s(i−1, j−1) = n, s(i, j−1) = k}
= am,n,k,l. (1)

wherem, n, k, l ∈ {1, 2, ..., M} are actual values of the state.
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Fig. 1. Example of state transition diagrams of 2D-HMM:
(a) general case (b) one simple case (in both cases, only part
is shown). Dashed square: image block, Dot: state, Shaded
blocks: neighbors of block s(i, j).

The above assumption guarantees that for each state, its
adjacent neighbors in horizontal, vertical and diagonal direc-
tions will be ”before” it in the sense of spatial localization,
thus ensuring the causality and Markovian property of the
model.

Assumption 2 The feature vector for each image block fol-
lows a Gaussian Mixture distribution, given its corresponding
state, and it is independent of other feature vectors and their
corresponding states.

Since any state with an M -component Gaussian mixture can
be split intoM substates with single Gaussian distributions[1],
we define the probability density function of feature vector
o(i, j), given its corresponding hidden state s(i, j) = m, as

bm(o(i, j)) =
1

(2π)
d
2 |Σm| 12 e−

1
2 (o(i,j)−μm)T Σ−1

m (o(i,j)−μm)

(2)
where d is the dimensionality of feature vector, μm and Σm

are the mean vector and covariance matrix of Gaussian dis-
tribution corresponding to state m. The proposed model can
be seen in Figure 2(a), which satisfies the above two assump-
tions.

3. 2D-HMM TRAINING AND CLASSIFICATION

3.1. Expectation-Maximization (EM) algorithm

We propose a newly derived Expectation-Maximization (EM)
algorithm suitable for the estimation of parameters of pro-
posed 2D-HMMmodel, which is analog but different than the
EM algorithm for 1D HMM [2][3]. Define the observed fea-
ture vector set O = {o(i, j), i = 1, 2, ...I; j = 1, 2, ...J} and
corresponding hidden state set S = {s(i, j), i = 1, 2, ...I; j =
1, 2, ...J}. The model parameters are defined as a set Θ =
{Π,A,B}, where Π = {πm} is the set of initial probabil-
ities of states; A = {am,n,k,l} is the set of state transition

probabilities, (m, n, k, l ∈ {1, 2, ..., M}); and B is the set of
probability density functions (PDFs) of the observed feature
vectors given corresponding states.
DefineF

(p)
m,n,k,l(i, j) as the probability of state correspond-

ing to observation o(i − 1, j) is state m, state corresponding
to observation o(i − 1, j − 1) is state n, state corresponding
to observation o(i, j − 1) is state k and state corresponding to
observation o(i, j) is state l, given the observations and model
parameters,

F
(p)
m,n,k,l(i, j) = P

(
m = s(i − 1, j), n = s(i − 1, j − 1),

k = s(i, j − 1), l = s(i, j)|O, Θ(p)

)
, (3)

and define G
(p)
m (i, j) as the probability of the state corre-

sponding to observation o(i, j) is state m, then

G(p)
m (i, j) = P (s(i, j) = m|O, Θ(p)). (4)

We can get the iterative updating formulas of parameters of
the proposed model,

π(p+1)
m = P (G(p)

m (1, 1)|O, Θ(p)). (5)

a
(p+1)
m,n,k,l =

∑I
i

∑J
j F

(p)
m,n,k,l(i, j)∑M

l=1

∑I
i

∑J
j F

(p)
m,n,k,l(i, j)

. (6)

μ(p+1)
m =

∑I
i

∑J
j G

(p)
m (i, j)o(i, j)∑I

i

∑J
j G

(p)
m (i, j)

. (7)

Σ(p+1)
m =

∑I
i

∑J
j G

(p)
m (i, j)(o(i, j) − μ

(p+1)
m )(o(i, j) − μ

(p+1)
m )T

∑I
i

∑J
j G

(p)
m (i, j)

.

(8)
In eqns. (3)-(8), p is the iteration step number. F (p)

m,n,k,l(i, j),
G

(p)
m (i, j) are unknown in the above formulas, next we pro-

pose a General Forward-Backward (GFB) algorithm for the
estimation of them.

3.2. General Forward-Backward (GFB) algorithm

Forward-Backward algorithm was firstly proposed by Baum
et al. [4] for 1D Hidden Markov Model. Later, Jia Li et
al. [1] proposed a similar Forward-Backward algorithm for
their model. Here, we would like to generalize the Forward-
Backward algorithm in [1][4] so that it can be applied to any
HMM system, the proposed algorithm is called General Forward-
Backward (GFB) algorithm.
For any HMM system, if its state sequence satisfy the fol-

lowing property, then GFB algorithm can be applied to it:

Property 1 The probability of all-state sequence S can be
decomposed as products of probabilities of conditional-independent
subset-state sequences U0, U1, ....

P (S) = P (U0)P (U1/U0)...P (Ui/Ui−1)... (9)
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Fig. 2. (a) State transition diagram of proposed 2D-HMM and
(b) its decomposed subset-state sequences.

where U0, U1, ..., Ui...are subsets of all-state sequence in the
HMM system, we call them subset-state sequences. Define
the observation sequence corresponding to each subset-state
sequence Ui as Oi. Subset-state sequences for our model are
shown in Figure 2(b), which is similar to [5]. Please note that
if the dependencies are not defined on adjacent nearest neigh-
bors, Ui are no longer guaranteed to be non-overlapping. The
new structure enables us to use General Forward-Backward
(GFB) algorithm to estimate the model parameters.

3.2.1. Forward and Backward Probability

Definition 1 The forward probability αUu
(u), u = 1, 2, ... is

the probability of observing the observation sequenceOv(v ≤
u) corresponding to subset-state sequence Uv(v ≤ u) and
having state sequence for u-th product component in the de-
composing formula as Uu, given model parameters Θ.

αUu(u) = P{S(u) = Uu, Ov, v ≤ u|Θ} (10)

The recursive updating formula of forward probability is

αUu(u) = [
∑
u−1

αUu−1(u−1)P{Uu|Uu−1, Θ}]P{Ou|Uu, Θ}.
(11)

for u > 1.

Definition 2 The backward probability βUu(u), u = 1, 2, ...
is the probability of observing the observation sequence Ov

(v > u) corresponding to subset-state sequence Uv(v > u),
given state sequence for u-th product component as Uu and
model parameters Θ.

βUu
(u) = P (Ov, v > u|S(u) = Uu, Θ). (12)

We also derive the recursive updating formula of backward
probability as follows:

βUu(u) =
∑
u+1

P (Uu+1|Uu, Θ)P (Ou+1|Uu+1, Θ)βUu+1(u+1).

(13)

The estimation formulas of Fm,n,k,l(i, j), Gm(i, j) are :

Gm(i, j) =
αUu

(u)βUu
(u)∑

u:Uu(i,j)=m αUu
(u)βUu

(u)
. (14)

Fm,n,k,l(i, j) =

αUu−1(u − 1)P (Uu|Uu−1, Θ)P (Ou|Uu, Θ)βUu
(u)∑

u

∑
u−1[αUu−1(u − 1)P (Uu|Uu−1, Θ)P (Ou|Uu, Θ)βUu

(u)]
.

(15)

3.3. 2D Viterbi algorithm

For classification, we employ a two-dimensional Viterbi al-
gorithm [5] to search for the best combination of states with
maximum a posteriori probability and map each block to a
class. This process is equivalent to search for the state of
each block using an extension of the variable-state Viterbi al-
gorithm presented in [1], based on the new structure in Fig.
2(b).
If we search for all the combinations of states, suppose the

number of states in each subset-state sequence Uu is w(u),
then the number of possible sequences of states at every po-
sition will be Mw(u), which is computationally infeasible.
To reduce the computational complexity, we only use N se-
quences of states with highest likelihoods out of the Mw(u)

possible states.

3.4. Summary of the proposed algorithms

-Training:
1. Assign initial values to πm, am,n,k,l, μm and Σm.
2. Update the forward and backward probabilities accord-

ing to equations (11) and (13) using proposed GFB algorithm.
3. Update Fm,n,k,l(i, j), Gm(i, j) according to equations

(14)-(15).
4. Update {πm,am,n,k,l,μm,Σm} according to equations

(5)-(8) using proposed EM algorithm.
5. Back to step 2, stop until changes of parameters are

below pre-set thresholds.

-Classification:
Use the proposed two-dimensional Viterbi algorithm to

search for the best combination of states with maximum a
posteriori probability.

4. EXPERIMENTAL RESULTS: IMAGE
CLASSIFICATION

In this section, we compare our general 2D-HMMmodel with
the model presented in [1] for the classification and segmen-
tation of man-made and natural regions of aerial images. The
images used are 6 aerial images of the San Francisco Bay
area provided by TRW (formerly ESL, Inc.). One of the six
images used is shown in Fig. 3(a) and its hand-labeled truth
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Fig. 3. Comparison of the classification results of the pro-
posed general 2D-HMM model and the model presented in
[1]: (a) an original aerial image; (b) hand-labeled truth image;
(c) classification results using the model presented in [1]—
error rate 13.39%; and, (d) classification results using the pro-
posed general model—error rate 11.67%. (White: man-made
regions, Gray: natural regions)

image is depicted in Fig. 3(b). The images are divided into
non-overlapping blocks, and feature vectors for each block
are extracted. The feature vector consists of nine features,
of which 6 are intra-block features, as defined in [1], and
3 are inter-block features defined as the differences of aver-
age intensities of block (i, j) with its vertical, horizontal and
diagonal block. Let the average intensity of block (i, j) be
I(i, j), then the 3 features are f7 = I(i, j) − I(i − 1, j);
f8 = I(i, j)− I(i− 1, j − 1); and f9 = I(i, j)− I(i− 1, j).
We first train our model using training images, and esti-

mate the model parameters based on the training feature vec-
tors and their corresponding truth set of classes. We then per-
form image classification for a test image using the trained
model. Feature vectors are generated for each block in the
test image in the same way as in training. For testing the
model, six-fold cross-validation is used. For each test, one
image is used as a test image, and the other 5 serve as training
images. 2D-HMMmodels with different number of states and
different block sizes are evaluated. We found that the model
with 6 states for the natural class and 8 states for the man-
made class yields the best result. The classification results
are shown in Table 1. We can see that for all of the different
block sizes, the proposed 2D-HMM model outperforms the
existing model. Comparison of these models for one of the
classified images is shown in Figs. 3(c) and 3(d).

Table 1. Average Classification Error Rate VS. Blocksize
Algorithm Blocksize=4 Blocksize=8 Blocksize=16

Existing model 0.1874 0.2420 0.2921
Proposed model 0.1536 0.2041 0.2596

5. CONCLUSIONS

We propose a general two-dimensional hiddenMarkovmodel.
This model allows state dependency in diagonal directions.
Our approach to 2D-HMMmodel can be extended beyond the
diagonal direction to any dependency which preserves causal-
ity. A new Expectation-Maximization algorithm, a General
Forward-Backward algorithm and a new structure of the 2D
Viterbi algorithm are proposed. The application to aerial im-
age classification shows the superior performance of our 2D-
HMM model than the existing model. The proposed model
can be extended further to a more general non-causal, multi-
dimensional hidden Markov model by decomposing it into
multiple distributed causal HMMs. Preliminary results have
shown that this method will preserve much more information
and yield superior results. This approach will be explored in
our future work.
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