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ABSTRACT

An image segmentation method based on structural pattern recog-
nition is presented. Two graphs are generated from the image to be
segmented. A model graph is generated from an oversegmentation of
the image and from traces provided by the user. An input graph is ge-
nerated from the oversegmented image. Image segmentation is then
obtained by matching the input graph to the model graph. An objec-
tive function is defined and optimized using a new approach to find
the most suitable clique of the corresponding association graph. The
structural information encoded in the graphs leads to a robust seg-
mentation performance even in the case of non-homogeneous tex-
tured regions. Successful experimental results obtained from real
images are provided.

Index Terms— Interactive image segmentation, inexact graph
matching, graph models

1. INTRODUCTION

Some successful image segmentation methods based on interactive
(i.e. semi-automated) approaches have been described in the litera-
ture. Semi-automated approaches rely on human knowledge provi-
ded as some kind of user input. Such input is then used to start and
guide the segmentation process. The most classical example of such
approaches is region-growing where the seeds are provided by the
user by clicking on the region of interest. Examples of more sophis-
ticated methods include watershed using user-provided markers [1],
Image Foresting Transform (IFT) [2] and graph-cuts and Markov-
random fields [3, 4], to name but a few. See also [5] for a review
on interactive image segmentation. Although such semi-automated
approaches brought important successful tools to the image segmen-
tation literature, most of the methods proposed so far do not take
into account the overall image structure to guide the segmentation
procedure. This paper presents a new approach based on graph mat-
ching which incorporates structural information to produce the final
segmentation.
Image segmentation can also be expressed as a model-based re-

cognition problem [6, 7]. In such approaches, a model of the image
to be segmented should be provided. An example of such a situ-
ation is medical imaging when an atlas of the image structures to
be segmented and recognized is available. A graph representation
is extracted from the model image. The image to be segmented is
oversegmented (e.g. by watershed) and also represented as a graph.
Image segmentation is then carried out by matching model and in-
put image graphs. Therefore, such methods explicitly take the image
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structural information into account in order to produce the final seg-
mentation.
The present paper introduces a new method that takes advantage

of the aforementioned approaches, i.e. semi-automated approach for
model initialization and structural information to guide the segmen-
tation procedure. The input image to be segmented is decomposed
into regions through a watershed algorithm, as shown in Figure 1.
Some regions of the oversegmented image are manually labelled by
traces drawn on the main structures to be segmented. Two attributed
relational graphs (ARGs) are then generated from the image. A mo-
del graph is automatically derived from the image and the watershed
regions intersected by the label traces provided by the user. An input
graph is generated from the image and its watershed decomposition.
Image segmentation is then carried out by matching the input graph
to the model graph, thus producing the final segmentation result.
The possible graph matches are shown to be equivalent to cli-

ques of the association graph between input and model graphs (Fi-
gure 2). There is a huge combinatorial number of cliques that repre-
sent possible solutions for segmenting the image, though only very
few of them are acceptable. A new clique search method is here
introduced to look for the most suitable cliques. The structural in-
formation leads to a robust segmentation performance even in the
case of non-homogeneous textured regions, which are traditionally
very difficult to segment. Hence, the main original contributions of
the present work are: (1) the introduction of an interactive approach
to create the model for model-based image segmentation and (2) the
introduction of a new optimization algorithm for graph matching.
This paper is organized as follows. Section 2 presents our method,
introducing the necessary notations and definitions, graph attributes,
dissimilarity measures and the new optimization algorithm. Experi-
mental results are described in Section 3. This paper is concluded
with some comments on our ongoing work in Section 4.

2. MODEL-BASED IMAGE SEGMENTATION

Model and InputGraph Representation. In this work,G = (V, E)
denotes a directed graph where V represents the set of vertices of G
and E ⊆ V × V the set of edges. Two vertices a ∈ V , b ∈ V
are adjacent if (a, b) ∈ E. An attributed relational graph (ARG)
is defined as G = (V, E, μ, ν), where μ : V → LV assigns an
attribute vector to each vertex of V . Similarly, ν : E → LE as-
signs an attribute vector to each edge of E. The vertices and the ed-
ges attributes are called object and relational attributes, respectively.
Two ARGs Gi = (Vi, Ei, μi, νi) and Gm = (Vm, Em, μm, νm)
are used, henceforth referred to as the input and the model graphs,
respectively. |Vi| denotes the number of vertices in Vi, while |Ei|
denotes the number of edges in Ei. We use a subscript to denote
the corresponding graph, e.g. ai ∈ Vi denotes a vertex of Gi, while
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Fig. 1. The input and model graphs formation process: the input
image is oversegmented by a watershed procedure. Each region is
represented as an input graph vertex. An adjacency graph is then
generated. The user defines the model graph vertices by drawing
label traces on some structurally important regions. The model graph
is created as a complete graph.

(ai, bi) ∈ Ei denotes an edge of Gi. Similar notations are used
for Gm. Only one object attribute μ(a) has been adopted in the
present paper, defined as μ(a) = (g(a)), where g(a) denotes the
average gray-level of the image region associated to vertex a ∈ V .
g(a) is normalized between 0 and 1 with respect to the minimum
and maximum possible gray-levels. Similarly, only one relational
attribute is used. Let a, b ∈ V be two vertices of G, and pa and
pb be the centroids of the respective corresponding image regions.
The relational attribute ν(a, b) of (a, b) ∈ E is defined as the vector
ν(a, b) = (pb − pa)/(2dmax), where dmax is the largest distance
between centroids of all vertices of V . Note that the method extends
to larger sets of attributes.
An inexact match between Gi and Gm may be represented as a

homomorphism between Gi and Gm and is searched on the corres-
ponding association graph [6]. The association graph GA between
Gi and Gm is defined as the complete graph GA = (VA, EA),
with VA = Vi × Vm. An inexact match between Gi and Gm

can be expressed as a clique GS = (VS, ES) of the association
graph GA between Gi and Gm with VS = {aim = (ai, am), ai ∈

Vi, am ∈ Vm} such that ∀ai ∈ Vi,∃am ∈ Vm, aim ∈ VS and
∀aim ∈ VS, ∀bim ∈ VS, ai = bi ⇒ am = bm which guarantees
that each vertex of the image graph has exactly one label (i.e. it is
mapped onto a single vertex of the model graph) and |VS | = |Vi|.
These concepts are illustrated in Figure 2.
There is a huge number of cliques that represent possible ine-

xact matches between Gi and Gm, i.e. |Vm||Vi|. The evaluation of
the quality of a solution expressed by GS is performed through an
objective function which assesses the quality of a given clique and
its suitability with respect to each specific application:

f(GS) =
α

|VS|

X
aim∈VS

cV (aim) +
(1 − α)

|ES |

X
e∈ES

cE(e) (1)

where cV (aim) is a measure of dissimilarity between the attributes
of ai and am. Similarly, if e = (aim, bim), cE(e) is a measure of the
dissimilarity between edge (ai, bi) of the image and edge (am, bm)
of the model. The dissimilarity objective function should therefore
be minimized. Let aim ∈ VA, ai ∈ Vi and am ∈ Vm. The dissimi-
larity measure cV (aim) is defined as cV (aim) = |gi(ai)−gm(am)|,
where gi(ai), gm(am) are the object attributes of vertices ai ∈
Gi, am ∈ Gm, respectively. Let e = (aim, bim) ∈ EA. We
compute the modulus and angular differences between ν(ai, bi) and
ν(am, bm) as φm(e) = |‖ν(ai, bi)‖ − ‖ν(am, bm)‖| and φa(e) =
| cos(θ)−1|

2
, respectively, where θ is the angle between ν(ai, bi) and

ν(am, bm). In order to define the dissimilarity measure cE(e), we
need an auxiliary function: ĉE(e) = γEφa(e)+(1−γE)φm(e) The
parameter γE (0 ≤ γE ≤ 1) controls the weights of φm and φa. It is
important to note that ν(a, a) = �0. This fact means that, when two
vertices in Gi are mapped onto a single vertex of Gm by the homo-
morphism, we have cE(e) = ‖ν(ai1 , ai2) − �0‖ = ‖ν(ai1 , ai1)‖,
which is proportional to the distance between the centroids of the
corresponding regions in the oversegmented image (in such cases,
we define cos(θ) = 1). Therefore, ĉE would give large dissimila-
rity measures when assigning the same label (i.e. the target vertex in
Gm) to distant regions and lower measures when assigning the same
label to near regions, which is intuitively desirable in the present
application.
Let ai1 , ai2 ∈ Vi and am1

, am2
∈ Vm be vertices of Gi and

Gm, respectively. Suppose that ai1 and ai2 are matched to am1

and am2
, respectively. In this case, the edge (ai1 , ai2) should be

matched to (am1
, am2

) and the dissimilarity measure between them
should be evaluated. However, depending on the adopted graph to-
pology, it is possible that one or both edges do not actually exist and

(a) (b)

Fig. 2. Schematic representation of the proposed approach in the
case of a four nodes input graph and a three nodes model graph.
(a) Association graph between the input and the model graphs. The
inexact match between these graphs is obtained by searching for a
suitable clique in the association graph. (b) A possible solution cli-
que.
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the dissimilarity measure should properly deal with such situations.
The edge dissimilarity measure is therefore defined as:

cE(e) =

8><
>:

ĉE(e), (ai1 , ai2) ∈ Ei, (am1
, am2

) ∈ Em

ĉE(e′), (ai1 , ai2) 
∈ Ei, (am1
, am2

) ∈ Em

∞, (ai1 , ai2) ∈ Ei, (am1
, am2

) 
∈ Em

0, (ai1 , ai2) 
∈ Ei, (am1
, am2

) 
∈ Em

(2)

This dissimilarity measure cE addresses all possibilities of missing
edges. The case where (ai1 , ai2) 
∈ Ei and (am1

, am2
) ∈ Em is of

particular interest, and arises because of the oversegmentation impo-
sed on the input image and the fact that a connectivity graph is used
to generate the ARGs. In such situations, (ai1 , ai2) is expected to
be compared to (am1

, am2
) and the vertex attributes are calculated

on-the-fly, i.e. by the dissimilarity measure procedure itself. This is
indicated in Equation 2 by edge e′ = (ai1,m1

, ai2,m2
) instead of e.

The Optimization Algorithm. The objective function (Equation 1)
should be optimized in order to find a suitable inexact match between
Gi and Gm. There are many different optimization algorithms that
may be used and the reader is referred to [6] for a comparative re-
view that includes beam-search, genetic algorithms and Bayesian
networks. The beam-search algorithm provided good results in a
much faster way. We have improved the beam-search algorithm
(both regarding running time and quality of the results) and we pro-
pose here a new approach that searches for a solution using the as-
sociation graph GA.
Figure 3 illustrates the basic idea behind the algorithm. The al-

gorithm starts with an empty clique GS and incrementally increases
it by evaluating the objective function (Equation 1). The cheapest
clique is chosen and a new vertex is added to it at each iteration. The
algorithm stops when a clique that represents a complete solution is
found.

Fig. 3. Illustrative scheme of the optimization algorithm developed
to find the solution in the association graph.

The vertices of GA are of the form aim = (ai, am), ai ∈
Vi, am ∈ Vm. For each ai ∈ Vi there is a set of vertices aim =
(ai, am), am ∈ Vm that represents all possible labels to which ai

may be assigned. Each of these sets is called a supervertex of GA,
defined as: si = {aim = (ai, am) ∈ Vs, ai ∈ Vi, ∀am ∈ Vm}
For instance, in the example of Figure 3 for ai = 1 we have the
supervertex vertices s1 = {(1, 1), (1, 2), (1, 3)}. The supervertices
s1, s2, s3 and s4 are indicated in Figure 3. A clique GS that re-
presents a valid solution is composed by one single vertex aim of

each supervertex si in GA. For each supervertex, the association
vertex aim with the best node cost defines the supervertex cost. The
proposed algorithm selects the cheapest supervertex si at each itera-
tion. All vertices aim of the selected supervertex si are considered in
order to identify which one minimizes the objective function (Equa-
tion 1) when added to the solution clique. This idea is inspired by the
Sequential Forward Search (SFS) algorithm for feature selection [8].
An empty solution clique is created to initialize the process. The

search begins by selecting the cheapest association vertex aim of the
cheapest supervertex si. In the example of Figure 3, the cheapest su-
pervertex is s3 and the vertex (3, 1) is selected to be included in the
empty clique. The second cheapest supervertex is selected and all
corresponding association vertices are considered to be included in
the current solution clique. The vertex that produces the clique with
minimum cost is selected and included in the solution clique GS . In
the example of Figure 3, the considered cliques are: {(3, 1), (1, 1)},
{(3, 1), (1, 2)}, {(3, 1), (1, 3)}. The objective function is optimized
with {(3, 1), (1, 2)}, which is then taken as the new current solution
clique. The algorithm proceeds in an analogous manner until a va-
lid solution is reached. In the case of the example shown in Figure
3, the final solution is {(3, 1), (1, 2), (2, 3), (4, 1)}. It is important
to note that, although the total search space increases exponentially
(i.e. |Vm||Vi|), this algorithm is O(|Vm||Vi|) since there is no back-
tracking and each supervertex is visited only once.
The final solution produced by the matching procedure may be

represented as a labelled image where a label associated to the mo-
del vertices is assigned to each pixel (actually, to all pixels of each
watershed connected region). A mode filter is applied to the label-
led image to smooth the produced boundaries and to eliminate small
noisy labels.

3. EXPERIMENTAL RESULTS

The proposed approach has been implemented in a Java software and
applied to different images of the Berkeley Image Segmentation Da-
tabase 1. Some illustrative results are shown in Figure 4. The original
gray-scale images are shown in the left column. The user defined la-
bel traces are shown in the middle column. Each color represents a
different label. The scene segmentation is shown in the right column.
The segmentation process is carried out, in practice, in an interactive
manner. The user initially draw some few traces and is able to visua-
lize the initial solution provided by the matching process. Then, new
label traces are interactively added until an acceptable segmentation
is reached. It is worth noting that the image regions may present
similar gray-level and belong to different model classes defined by
the user labels. Also, there are some image regions with substantial
gray-level variation because of belonging to non-homogeneous tex-
tured regions, which are traditionally very difficult to segment. The
structural information leads to a robust segmentation performance
even in such cases.

4. CONCLUSION

An interactive image segmentation approach based on inexact graph
matching was presented in this paper. The proposed approach has
been developed based on previous model-based image segmentation
works [6, 7] and presents two main contributions besides the method
per se: the introduction of an interactive approach to create the mo-
del for model-based image segmentation and the introduction of a

1
http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/segbench/

VI - 47



Fig. 4. Image segmentation results.

new optimization algorithm for model matching. Successful experi-
mental results have been presented. Our ongoing work includes spe-
eding the matching algorithm and adding additional object attributes
such as color and texture, as well as comparing it to other approa-
ches, e.g. traces could be provided as initialization of deformable
models, instead of our approach. However, since the traces are li-
kely to be far from the expected boundaries, the deformable models
would exhibit a poor convergence, towards undesired edges.
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