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ABSTRACT

For successful cure, cancer has to be detected as early as pos-

sible. Since cancer starts from a single cell, this can best

be done using cytopathological methods. One important di-

agnostically relevant measure is the proliferation rate of the

cells, which can be estimated from segmented silver stained

nuclei. However, the microscopy images of silver stained

specimens vary strongly in intensity and contrast and are fur-

thermore compromised by an overall texture.

We show that a precise segmentation of the nuclei is pos-

sible using a two-step approach. First, an oversegmentation

with the mean shift algorithm is obtained. In a second step,

these regions are merged to objects, guided by a suitable shape

model, viz an ellipse, but simultaneously allowing deviations

from this shape model. The segmentation results are com-

pared to a gold standard of 8617 nuclei from 23 specimens of

the thyroid gland, achieving a mean areal segmentation error

of ΔĀnucleus = 12μm2 per nucleus.

Index Terms— silver stain, microscopy images, nuclear

segmentation, mean shift algorithm, region grouping

1. INTRODUCTION

Cancer is one of the foremost reasons of death in industrial

countries. To counteract the consequences of cancer, the dis-

ease has to be detected and treated early. This can best be

achieved at cellular level, to detect the earliest onset of a

tumor. The cell specimens can be analyzed microscopically

with a variety of diagnostic methods. Besides routinely used

methods, the proliferation of suspicious cells is diagnostically

relevant, since high proliferation indicates cancer.

One method to measure the proliferation rate of cells is to

analyze the cells after silver staining. Silver is accumulated

on active nucleolar organizer regions (AgNORs) within the

nuclei. These AgNORs can be observed with a microscope as

dark, spot-like regions (Fig. 1). Their count and area within

each nucleus may be taken as a measure of the amount of pro-

tein synthesis, which is related to the proliferation rate. It has
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been shown that this is a diagnostically highly relevant cri-

terion for different types of cancer [1, 2, 3]. For cytological

diagnosis of cancer of, e.g., the oral mucosa [2], the sensitiv-

ity has thus been increased from 97% to 100%. Furthermore,

the AgNOR area, measured on fine needle aspiration biopsies

from the thyroid gland, allowed to preoperatively distinguish

between adenoma and carcinoma [4].

In previous work we have developed methods to automat-

ically analyze AgNORs [5, 6]. This analysis in turn requires

that the nuclei have to be segmented and detected within the

microscopy images first.

2. STATE OF THE ART

To segment nuclei in images of commonly used cell stainings,

e.g., Papanicolaou or May-Grünwald-Giemsa, methods based

on level-sets [7], region-growing [8], mean shift segmenta-

tion [9] and active contours [10, 11] have been developed.

Unlike these stainings, however, images of silver stained spec-

imens are afflicted by strong variations of both contrast and

intensity (Fig. 1).

Fig. 1. Two silver stained nuclei from epithelial cells of the

thyroid. Note the artifacts (“snow”) and variations in contrast

and intensity. These variations are observable even within

one specimen. Inside the nuclei, the AgNORs (dark, spot-like

regions) can be seen.

These variations appear on different specimens as well as

within one specimen. Furthermore, the images may be com-

promised by an overall texture. Hence, a-priori knowledge,

i.e., a geometric model, has to be incorporated into the seg-
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mentation algorithm. Deviations from this model have to be

allowed since nuclei may vary in shape and size. The pro-

posed segmentation of silver stained nuclei thus consists of

two steps: an oversegmentation with the mean shift algorithm

followed by a shape model-guided region merging.

3. MEAN SHIFT SEGMENTATION

To segment nuclei and subcellular features like AgNORs, the

segmentation algorithm must consider color-similarity as well

as local connectivity. It has been shown that good results for

image segmentation [12] can be achieved with the mean shift

algorithm [9, 13, 14]. The mean shift algorithm is an unsu-

pervised clustering algorithm based on a kernel density esti-

mate [9]

f̂(x) =
1

nhd

n∑
i=1

K(
x− xi

h
) (1)

where xi ∈ R
d, i = 1..n, are n feature vectors and h is the

window radius of the used kernel K. Let the mean shift vector

m(x) be defined as a vector proportional to the normalized

density gradient estimate

m(x) ∝ ∇̂fK1

f̂K2

. (2)

Thus, the mean shift vector is always directed towards the

maximum increase in the density function. Choosing K1 to

be the Epanechnikov kernel and K2 to be the Flat kernel, it

can be shown that

m(x) =
1

Nx

∑
xi∈Sh(x)

(xi − x) (3)

where Sh(x) is the d-dimensional unit sphere [9, 13]. Itera-

tive calculation of the mean shift vector and shifting the kernel

window by this vector will converge close to a point with zero

gradient [9], i.e., to a mode. This efficiently seeks, for every

feature vector xi, the corresponding mode on the underlying

density function.

For image segmentation, every pixel is assigned a feature

vector, which is composed of the spatial location of the pixel

and its color value in the L∗u∗v∗-color space. To account for

different scaling of the spatial space and the color space, we

use an anisotropic kernel window (hs, hc) [9]. The clusters

found by the mean shift algorithm form the image segments

containing adjacent pixels with a certain similarity in color.

Modes closer than hs and hc are grouped into one seg-

ment. Subsequently, spurious segments with fewer pixels than

some threshold may be merged to similar modes [9].

The mean shift algorithm allows to calculate a specific

amount of oversegmentation such that the segment bound-

aries include all edges, which are part of the sought nucleus

contour. Due to the precision of these boundaries it is not nec-

essary to improve their position. Hence, adjacent segments

belonging to one object can now be grouped together [15].

4. REGION GROUPING

An intuitive model for a nucleus is an ellipse, which is de-

scribed through its centroid (x̄, ȳ), its orientation φ and the

lengths of the two principal axes (the shape parameters) a.

Hence, the parameter vector a allows an anisotropic scaling

of the ellipse. Let gi be a set of adjacent segments, which is

to be checked for merging. Based on the central moments

μpq =
∑

x,y∈gi

(x− x̄)p(y − ȳ)q (4)

of the group gi, the covariance matrix C

C =
1

μ00

(
μ20 μ11

μ11 μ02

)
(5)

and the corresponding larger eigenvalue λ1 and eigenvector

v1, with C ·v1 = λ1 ·v1, can be calculated. This then allows

to estimate the orientation of an elliptic approximation for gi

by

φ = arctan

(
λ1 − μ20/μ00

μ11/μ00

)
(6)

After rotating the group gi by−φ around the centroid, the pa-

rameter vector a can be estimated from the distance between

centroid and horizontal and vertical extent of the group gi.

This first estimate can then be refined in order to achieve best

possible area overlapping of gi and its elliptic approximation.

We used the downhill-simplex-algorithm [16] for optimiza-

tion.

We assume that the parameter vector a follows a Gaus-

sian distribution for the nuclei. Hence, we have calculated the

mean parameter vector ā and the corresponding covariance

matrix Σ on a representative set of N = 85 independent, seg-

mented, and reviewed nuclei. Consequently, the probability

of the group gi to be a nucleus is given by

p(a) =
1

(2π)N/2|Σ|1/2
e−

1
2 ãT Σ−1ã, ã = a− ā. (7)

A group gi can differ considerably from the elliptic shape.

We take this into account by a cost function E(gi) which as-

sesses how likely it is that the group gi is a nucleus. E(gi) is

composed of two components weighted by β:

E(gi) = (1− β)EDeformShape + βEDeformSize (8)

with

EDeformShape =
Agi

Aellipse

A2
C

1
κ

; κ =
Agi

c2
gi

(9)

and

EDeformSize = ãT Σ−1ã ; ã = a− ā (10)

where Agi , Aellipse and AC are the area of the group, the area

of the ellipse, and the common area, respectively; κ the com-

pactness and cgi
the circumference of the group gi. To assess
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the improvement contributed by a newly formed grouping to

the partition of the entire image, E(gi) is incorporated into a

global cost

Eglobal = (1−γ)
[ n∑

i=1

ξiE(gi)
]
+γn ; ξi =

Agi∑
j Agj

(11)

with n being the number of groupings within the partition,

and γ a weighting factor. Consistent with the minimum-des-
cription-length-principle [15], this approach prefers a simple

partition of the image over a partition into many small re-

gions.

Since a full search over all possible groups of segments

is not feasible, the groups have to be selected appropriately.

Therefore, we set up a region adjacency graph for all seg-

ments in the image. Based on the Euclidian distance of the

mean color value and variance between neighboring segments,

we start by selecting the closest segments first. For the largest

region in such a set of adjacent regions, we consider its com-

bination with each of its neighboring regions as group gi and

compute the global cost that would result from merging this

group. The first of the tested combinations, that leads to an

improvement of the global cost, is merged. This is repeated

until no further decrease of the global cost is possible.

5. EXPERIMENTS, RESULTS AND DISCUSSION

We acquired 4006 images of 23 specimens of the thyroid

gland in two stains (Table 1). Rather than directly apply-

ing the silver stain, these specimens were first stained us-

ing the so-called Feulgen stain, where the nuclei in general

appear very clearly. An accurate segmentation of the nuclei

in this staining is obtained as decribed in [17]. After review

by an experienced cytopathologist, these segmentations pro-

vide the gold standard against which the segmentation results

for silver stain obtained by the described algorithm are com-

pared. Note that, in contrast to a gold standard created by

pure manual segmentation by an expert, this procedure re-

duces the influences of inter- and intra-individual variabil-

ity. After de-staining to remove the Feulgen stain and sub-

sequent re-staining with silver nitrate, images of the same
cells were acquired and registered [17] to their corresponding

Feulgen images. For corresponding nuclei segmentations be-

tween the Feulgen reference and the silver stain data, we cal-

culated the non-overlapping area (symmetric difference) per

nucleus ΔA = AFeulgen�Asilver. Results for individual nu-

clei from images of different specimens are shown in Fig. 2.

Note that the fourth nucleus in Fig. 2 strongly differs from the

elliptic shape model, but was still segmented correctly. The

segmentation precision achieved on the silver stained speci-

mens ranges from ΔA = 4.8μm2 (best) to ΔA = 41.96μm2

(worst). The mean segmentation precision over all 23 spec-

imens is ΔĀnucleus = 12μm2. Further numerical results are

given in Table 1. These results have been obtained setting

γ = 0.002 and β = 0.008 for all images. The kernel radius h

(a) (b) (c) (d)

Fig. 2. Example results for nuclei segmentations. Each row

shows another nucleus of a cell from the thyroid. Column

(a) shows the nuclei stained according to Feulgen with cor-

responding gold standard segmentations. In column (b) the

corresponding images of the identical nuclei in the silver stain

are shown with their segmentation results. The intermediate

mean shift oversegmentation result and the segmentation er-

ror with respect to the goldstandard are shown in column (c)

and (d) respectively. The nucleus in the first row is from a

specimen (No. 19 in table 1) with a strong contrast between

nucleus and cytoplasm. Note the precise segmentation despite

the presence of dirt particles. In rows 2 and 3 examples of nu-

clei of a specimen (No. 23 in table 1) with low contrast and

strong staining artifacts are shown. Row 4 (No. 12 in table 1)

gives an example of a nucleus with strong deviation from the

geometric model. Finally, row 5 contains a nucleus from a

specimen (No. 6 in table 1) with strong intra–nuclear stain-

ing variability such that large AgNOR–clusters are detected

as objects, which significantly increases the mean segmenta-

tion error ΔĀnucleus.

has been chosen slide-specifically as inter-slide variations in

contrast are much more significant than intra-slide variations.

For 78% of the slides we set hs = hc = 14.

We have shown that reliable segmentations of nuclei in

silver stained cell specimens is feasible, even though the stain-

ing quality may vary strongly from nucleus to nucleus even on

the same slide. Our segmentation algorithm is based on an in-

termediate oversegmentation acquired with the mean shift al-
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specimen No. images No. cells ΔĀnucleus

1 144 356 7.51

2 196 450 9.65

3 90 315 11.09

4 156 274 8.23

5 173 173 26.45

6 245 377 41.96

7 168 405 7.22

8 157 668 9.86

9 244 300 14.24

10 106 196 21.20

11 190 337 28.06

12 187 301 11.90

13 242 491 7.63

14 207 421 6.47

15 226 176 14.00

16 186 508 7.98

17 134 581 9.35

18 140 330 6.31

19 140 640 4.80

20 165 573 10.69

21 174 135 9.19

22 147 332 11.42

23 189 278 16.20

all 4006 8617 12.00

Table 1. Results of our experiments. For each specimen this

table shows the number of images (No. images), the number

of detected cells within these images (No. cells) and the mean

difference between the segmented nuclear area compared to

the gold standard in μm2 (ΔĀnucleus).

gorithm. The regions of the oversegmentation are then merged,

guided by a shape model for the nuclei, which leads to a suc-

cessful segmentation for almost every isolated nucleus. Due

to the shape model, the segmentation fails for nuclei touch-

ing each other, overlapping nuclei, and lytic nuclei. Since the

latter two cases are irrelevant for diagnosis, our segmentation

provides the basis for a fully automatic analysis of cell nuclei

in silver stained specimens. To also include pairs of nuclei

touching one another, extending the shape model to also rep-

resent these, is already underway.
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