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ABSTRACT

One of the main challenges in image segmentation is to adapt

prior knowledge about the objects/regions that are likely to

be present in an image, in order to obtain more precise detec-

tion and recognition. Typical applications of such knowledge-

based segmentation include partitioning satellite images and

microscopy images, where the context is generally well de-

fined. In particular, we present an approach that exploits the

knowledge about foreground and background information given

in a reference image, in segmenting images containing simi-

lar objects or regions. This problem is presented within a

variational framework, where cost functions based on pair-

wise pixel similarities are minimized. This is perhaps one of

the first attempts in using non-shape based prior information

within a segmentation framework. We validate the proposed

method to segment the outer nuclear layer (ONL) in retinal

images. This approach successfully segments the ONL within

an image and enables further quantitative analysis.

Index Terms— Region-based image segmentation, vari-

ational methods, level sets, bioimage analysis.

1. INTRODUCTION

Object-background segregation can be considered as the com-

bination of two different, but tightly coupled, subtasks: ob-

ject detection and segmentation. Most of the general purpose

segmentation techniques, such as active contours [1], region

growing or watersheds [2, 3], and spectral methods [4], are

generally not suitable for separating a particular object from

a cluttered background. Shape information, extensively used

in the literature (see [5] and references therein), is not suitable

to describe complex objects, such as in biological images.

This paper presents a segmentation method, which ex-

ploits the prior knowledge in the form of a reference image

with known background/object separation. We define varia-

tional cost functions using a dissimilarity measure between
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pixels of the reference image and pixels of the images to

be segmented. The minimization of these cost functions is

achieved within a level set framework, resulting in a com-

bined recognition and segmentation of the objects of interest.

We demonstrate the utility of the proposed approach on

confocal microscopy images of retina taken during detach-

ment experiments. Retinal images are critical components for

understanding the structural and cellular changes of a retina in

response to detachment. The first step towards any further ad-

vanced analysis is to have a reliable map of the retinal layers.

Segmenting retinal images is often difficult because of their

unique challenges. Image data in an individual region (e.g.

layer) is not statistically homogeneous. Further difficulties in

retinal images include visual variation from staining and con-

siderable variation of the object (layer) shape (see Section 3

for more details). In this context, retinal images are perfect

datasets to validate the proposed method. The objects of in-

terest here are different retinal layers (such as the ONL in Fig.

3), that we aim to separate from the rest of the layers.

The rest of paper is organized as follows. In Section 2, we

introduce novel variational cost functions to include prior in-

formation in the object-background segmentation process and

we minimize these cost functions within a level set frame-

work. Section 3 specializes the approach to segment the ONL

from the retinal images. Experimental results are discussed in

Section 4 and we briefly conclude in Section 5.

2. OBJECT/BACKGROUND SEGMENTATION
USING DISSIMILARITIES WITH A REFERENCE

Consider an image I1 and a reference image I2. We assume

known a partitioning of the reference image in foreground F2

and multiple components of the background B2i, with i =
1 . . . n. We propose to segregate the foreground in I1, namely

F1, from its background B1 by minimizing the following cost

function:

E =
∑

p1∈F1

∑
p2∈F2

w(p1, p2) +
∑

p1∈B1

min
i

∑
p2∈B2i

w(p1, p2) (1)
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where w(p1, p2) is a dissimilarity measure between pixels

p1 ∈ I1 and p2 ∈ I2. F1, B1 are a partitioning of I1 such

that F1 ∪ B1 = I1 and similarly F2, B2i are a partitioning of

the reference I2 such that F2 ∪
⋃n

i=1 B2i = I2. In order to

minimize the cost function in (1) within a variational frame-

work, we rewrite it in a continuous domain formulation as:

E =
∫

I1

∫
I2

w(p1, p2)χF1(p1)χF2(p2)dp2dp1 + (2)

∫
I1

min
i

∫
I2

w(p1, p2)χB1(p1)χB2i
(p2)dp2dp1

where

χF1(p) =
{

1 if p ∈ F1

0 if p /∈ F1

and χF2 , χB1 , χB2i are defined in a similar way. Since χF2

and χB2i , with i = 1 . . . n, are fixed, we need to minimize

(2) with respect to χF1 and χB1 . We are now going to rep-

resent χF1 and χB1 within a level set framework. Define a

3D surface φ such that F1 = {p1 ∈ I1 | φ(p1) > 0} and

B1 = {p1 ∈ I1 | φ(p1) < 0}. It is now possible to rewrite (2)

as:

E(φ) =
∫

I1

∫
I2

w(p1, p2)H(φ(p1))χF2(p2)dp2dp1 + (3)

∫
I1

min
i

∫
I2

w(p1, p2)
(
1−H(φ(p1))

)
χB2i

(p2)dp2dp1

where the Heaviside function H(z) is equal to 1 if z > 0
and 0 if z < 0. The gradient projection method minimizing∫

f(φ(x))dx, using t as the descent variable leads to:

∂φ

∂t
= −∂f

∂φ
(4)

In our case we can manipulate (3) so that:

f(φ(p1)) =
∫

I2

w(p1, p2)H(φ(p1))χF2(p2)dp2 (5)

+ min
i

∫
I2

w(p1, p2)
(
1−H(φ(p1))

)
χB2i

(p2)dp2

Therefore, applying (4) to (5) yields the curve evolution for

φ, which minimizes E(φ):

∂φ(p1)
∂t

= δ(φ(p1))
[
−

∫
I2

w(p1, p2)χF2(p2)dp2

+ min
i

∫
I2

w(p1, p2)χB2i
(p2)dp2

]
(6)

The cost function in (1) is biased towards equal sized parti-

tions. To remove this bias we normalize (6) as follows:

∂φ(p1)
∂t

= δ(φ(p1))
[ −1
|χF2 |

∫
I2

w(p1, p2)χF2(p2)dp2

+ min
i

1
|χB2i |

∫
I2

w(p1, p2)χB2i(p2)dp2

]
(7)

where |χ| = ∫
χ(p)dp, i.e. the area of the region represented

by the characteristic function χ. Every point on the zero level

set curve of φ in I1 is compared in similarity with the fore-

ground F2 of the reference and with the part of that back-

ground (B2i) that is less dissimilar with. The curve is then

expanded or shrunk accordingly, including or excluding that

point from the emerging foreground F1. A regularization term

is needed in the cost function to prevent the curve from wrap-

ping around spurious noisy regions. This is done by adding a

term proportional to the length of the zero level set of φ (see

[6, 1]):

EL = μ

∫
I1

|∇H(φ(p1))|dp1 (8)

Minimizing (8) via the steepest descent, we obtain a motion

by mean curvature equation for φ:

∂φ(p1)
∂t

= μ δ(φ(p1))div
( ∇φ(p1)
|∇φ(p1)|

)
(9)

The right hand side of (9) has to be added to the right hand

side of (7) to obtain the complete curve evolution for φ.

3. RETINAL LAYERS SEGMENTATION

A vertical section of a retina illustrates its complexity and

highly patterned architecture (Fig. 1). Each retinal layer has a

different structure consisting of the group of cell bodies or

synaptic terminals. Changes in the integrity of the layers,

such as deformations of the layer boundaries and cell den-

sities, serve as an index of retinal function after injury. More-

over, this layer information is used for localizing specific cells

and analyzing the effects of genes or drugs on retinal integrity.

Of interest to biology are measures such as the number of cell,

the layer thickness and changes in protein distribution in each

layer. Hence retinal layer segmentation is a critical first step

in quantifying the effects of retinal detachment or injury.

Since confocal retinal images are generated by using fluo-

rescence, only specific regions where fluorescent dye molecules

bind are visualized. The tissue stained with an antibody is

collected as a pseudo colored image. High intensity in the

image corresponds to a high concentration of protein expres-

sion and the rest of an image appears as dark regions (Fig. 2

(a)). When the tissue is stained with multiple antibodies, the

response to each antibody is combined to form a color image

where the color represents the protein response to each anti-

body. In addition, each layer has a different cellular structure,

which result in specific texture patterns as shown in Fig. 2

(b).

Consider Fig.3 that shows a reference image I2. The layer

marked as the ONL in this image is our reference foreground

F2. We would like to segment out this layer from the rest of

the images in our collection. Other layers in the reference im-

age will form the background set {B2i}. Note that the layer

ML in Fig 3 consists of four different layers that are not visu-

ally distinguishable from each other. From a retinal biology
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Outer segments (OS)

Photoreceptor
cell bodies
(ONL)

Interneurons (INL)

Ganglion cells (GCL)

Synaptic layer (OPL)
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RPE

Inner segments (IS)

Fig. 1. Confocal microscopy of a vertical section through a

cat retina.

ONL

(a)

ONL

(b)

Fig. 2. Example retinal images. (a) Triple labeled image of

rod photoreceptors (anti-rod opsin; red), microglia (isolectin

B4; green), and Müller cells (anti-GFAP; blue). (b) His-

togram equalized image of (a).

view point it is important to identify the ONL which serves as

a baseline for the cellular changes under a degenerative con-

dition and in identifying the other layers. Therefore we focus

on segmenting the ONL.

4. EXPERIMENTAL RESULTS

We present the result of applying proposed method to a series

of confocal images. 50 images of cat retina were generated

ML ONL IS OS BGBG

(a)

ML ONL IS OS BGBG

B21 B22 B23
B24 B24

F2

(b)

Fig. 3. Application to retinal images. (a) A reference im-

age. The layer boundaries are manually created. (b) Fore-

ground F2 (red) and multiple components of the background

B2i (gray levels) as in equation (7).

from tissue sections under four different experimental condi-

tions: 10 normal, 14 1-day, 14 3-day, and 7-day detached.

Images were labeled with isolectin B4 (green) and with an-

tibodies to rod opsin (red) and GFAP (blue) (Fig. 2). The

image of 1-day detached retina shown in Fig. 3 is used as

a reference to segment the ONL from all 50 images. The

ground truth data, consisting of the boundaries for the ONL,

is created manually.

The dissimilarity measure w(p1, p2) are computed as lin-

ear combination of color and texture information. Specifi-

cally:

w(p1, p2) = α wcol(p1, p2) + (1− α) wtex(p1, p2), (10)

where wcol(p1, p2) =
( ∑3

i=1(ci(p1) − ci(p2))2
)1/2

is the

distance between pixels in the space defined by three antibody

channels ci, and wtex(p1, p2) =
( ∑30

i=1(ti(p1)−ti(p2))2
)1/2

is the distance in the space defined by the Gabor filter outputs

[7], evaluated at five scales and six orientations (ti represents

the output at one particular scale and orientation).

The curve evolution for equation (7+9) is implemented us-

ing a semi-implicit finite difference scheme with the curvature

coefficient μ = 2000 for all the experiments. Fig. 4 shows the

some of the visual segmentation results of images under four

different conditions (α = 0.5). The detected ONL boundaries

are depicted in white and the ground truth in black.

In order to provide a quantitative evaluation of the results,

we compare them with the ground truth, computing precision
(p) and recall (r) as measures of the accuracy of the segmen-

tation1. In Fig. 5 (a) present the F measure, the harmonic

mean of precision and recall (F = 2pr
p+r ), varying the pa-

rameter α (weight of color and texture features). The best

score F = 0.883 is obtained for α = 0.5, which means

equal weight for color and texture. Since using only color

information the performance does not degrade significantly

(F = 0.873 for α = 1), the texture information can be ne-

glected, if saving in computation time is necessary.

1Precision is the probability that a pixel, indicated as belonging to the

ONL by the segmentation algorithm, is truly on ONL pixel. Recall is the

probability that an ONL pixel is correctly detected by the algorithm
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(a) (b) (c) (d)

Fig. 4. Segmentation results using α = 0.5. The white boundaries are detected by the proposed algorithm and black ones are

ground truth. (a) Normal (b) 1 day after detachment (c) 3 days after detachment (d) 7 days after detachment. In (b) and (d),

despite the presence of lectin-labeled cells (green objects), the ONL boundaries are delineated correctly.
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Fig. 5. Quantitative evaluation of the results. (a) F measures

varying the parameter α for the segmentation of the 50 im-

ages. (b) Error distribution using nuclei detection.

To validate if the segmentation results can be used for fur-

ther analysis, we compute the nuclei density within the seg-

mented region in an image using [8] (for α = 0.5). The nuclei

density is then compared with the density computed using the

ground truth (manually segmented boundaries). The average

error is 11.4% ranging with about 50 % of the images hav-

ing less than 5 % of error. The error distribution is shown

in Fig. 5 (b) (there were a few outlier images with large er-

rors, which are mostly attributed to poor imaging conditions).

We also evaluate the precision and recall using the number of

detected nuclei within the ONL (as opposed as pixels within

the ONL) and the resulting F measure is 0.92. Overall the

proposed method results in high quality segmentation of the

ONL, that would not have been possible without using prior

information. We are currently working on evaluating the seg-

mentation performance on the remaining layers as well.

5. CONCLUSIONS

We introduced a variational framework to exploit prior in-

formation in the foreground/bacgkround segmentation. Ex-

ploiting the knowledge about foreground and background in a

reference image, we defined a dissimilarity measure between

the pixels of the reference and the pixel of the image to be

segmented. We defined a variational cost function based on

these dissimilarities and we minimized it within a level set

framework. We demonstrated a successful segmentation of

the ONL in retinal images2. The segmented results are imme-

diately useful for further analysis including counting nuclei of

photoreceptors within the ONL. Improved version of the pro-

posed model for object-background segmentation in cluttered

natural images is part of the future work.
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