
LOW-DRIFT FIXED-POINT 8X8 IDCT APPROXIMATIONWITH 8-BIT TRANSFORM
FACTORS

Yuriy A. Reznik∗, De Hsu, Prasanjit Panda, Brijesh Pillai

QUALCOMM Incorporated
5775 Morehouse Drive, San Diego, CA 92121

ABSTRACT

We describe an efficient algorithm for computing the Inverse
Discrete Cosine Transform (IDCT) for image and video cod-
ing applications.

This algorithm was derived by converting an 8-point IDCT
factorization of C. Loeffler, A. Ligtenberg, and G. Moschytz
into a scaled form, leaving 8 multiplications by irrational fac-
tors inside the transform. The key advantage of such a modi-
fication is that these factors can be sufficiently accurately rep-
resented by 8-bit integer values, resulting in a very small dy-
namic range of variables inside the transform. Our scaled 1D
transform can be implemented either by using 8 multiplica-
tions, 26 additions and 6 shifts or (in a multiplier-less fashion)
by using only 44 additions and 18 shifts.

This implementation fully complies with the new MPEG
IDCT precision standard (ISO/IEC 23002-1, replacement of
former IEEE 1180 specification), and shows remarkably low
drift in decoding of H.263, MPEG-2, and MPEG-4 bitstreams
produced by reference software encoders (employing 64-bit
floating-point DCT and IDCT implementations).

Index Terms— DCT, IDCT, factorization, multiplier-less
algorithms

1. INTRODUCTION

The implementation of many existing image and video coding
standards (such as JPEG, H.261, H.263, MPEG-1, MPEG-2,
and MPEG-4 part 2) require the implementation of integer-
output approximations of the 8x8 inverse discrete cosine trans-
form (IDCT), and forward discrete cosine transform (DCT).

All these standards require decoders to use an approxima-
tion that is within a specified degree of precision relative to
the integer valued IDCT function, defined as follows:

f̂yx = �fyx + 1/2� , (1)

∗Corresponding author. Email: yreznik@ieee.org

where

fyx =
7∑

u=0

7∑
v=0

Fvu
cucv

4
cos

(2x + 1)uπ

16
cos

(2y + 1)vπ

16
,

cw =
{

1/
√

2, if w = 0
1, if w �= 0

,

Fv u – input DCT coefficients (u, v = 0...7), and

f̂y x – reconstructed pixel values (y, x = 0...7).

In order to satisfy precision requirements of MPEG and
ITU video standards, an IDCT approximation must pass sev-
eral tests. Most of these tests, defined in IEEE 1180 [3] and
ISO/IEC 23002-1 [2] specifications, produce sequences of
random-generated test matrices F i

vu (i = 1 . . . 10000), and
measure distances between reference and approximate IDCT
values (reconstructed matrices f̂ i

yx and ĝi
yx correspondingly),

using the following set of metrics:

p = maxy,x,i |f̂ i
yx − ĝi

yx| – peak pixel error (p � 1),

dyx =
∑

i f̂ i
yx − ĝi

yx – mean pixel error (max |dyx| � 0.015),

M =
∑

y,x dy x – mean error (|m| � 0.0015),

eyx =
∑

i(f̂
i
yx − ĝi

yx)2 – mean square error (max eyx � 0.06),

N =
∑

y,x ey x – overall mean square error (n � 0.02),

Here, the values in brackets specify the minimum necessary
IDCT precision required for use in MPEG and ITU-T video
coding standards.

However, passing these tests does not yet guarantee high
quality of decoded video, particularly in situations with low
quantization noise and long runs of predicted (P-type) frames
or macroblocks. This is why, in selecting an IDCT design, it
is always a good practice to use additional tests, such as ones
measuring the drift (difference between reconstructed video
frames in encoder and decoder) caused by the use of this ap-
proximate IDCT design in the decoder.

In this paper we describe the design of a low-complexity
fixed-point 8x8 IDCT algorithm, that passes all formal re-
quirements of MPEG and ITU-T video coding standards and

VI - 811-4244-1437-7/07/$20.00 ©2007 IEEE ICIP 2007

Pre-scaling of
transform coefficients:

SXij = (Xij* Sij) >> 2;

12 24 Add DC bias:
SX00 += 0x0800;

24 1D row
transforms

24 1D column
transforms

Right shifts
xij >>= 12;

1224 Clipping
9

Fig. 1. Fixed-point 8x8 IDCT architecture.

2 sin 3 /8
cos 3 /16
sin 3 /16sin /16

cos /16

0x

1x

2x

3x

4x

5x

6x

7x

0X

4X

2X

6X

7X

3X

5X

1X
2 sin 3 /82

Fig. 2. LLM IDCT factorization.

shows a remarkably low drift in decoding of H.263, MPEG-2,
and MPEG-4 SP bitstreams.

A particular feature of our proposed algorithm is a very
compact representation of fixed point factors inside the trans-
form – they need at most 8 bits of precision. This property
helps with reducing dynamic range of all intermediate val-
ues inside the transforms and yields very efficient multiplier-
based and multiplier-less implementations.

2. DESCRIPTION OF FIXED-POINT IDCT DESIGN

As underlying 8-point IDCT factorization for our fixed point
design we have chosen a well-known factorization of C. Lo-
effler, A. Ligtenberg, and G. S. Moschytz [1]. In its original
form (see Fig. 2), it uses 3 plane rotations and two direct mul-
tiplications, resulting in 14 multiplications by irrational fac-
tors. Overall, this factorization employs 7 unique irrational
factors, denoted in Fig. 2, as α, β, γ, δ, ε, ζ, and η.

In our fixed point design (see Fig. 3), we further modify
this factorization by moving factors α, γ, and ζ outside the
transform. In effect, this creates a scaled transform with only
8 multiplications, where modified irrational factors β ′, δ′, ε′

and η′ are such that they can be very accurately approximated
by using 8-bit integer fractions (see Fig. 3).

Scaling in this algorithm is done by combining 1D scale
factors for rows and columns. This results in a 2D matrix of
scale factors with 10 unique values, denoted as A− J :

2 sin 3 /8
cos 3 /16 171' tan 3 /16

256
sin /16 15'
cos 3 /16 32

cos /16 151'
cos 3 /16 128

0x

1x

2x

3x

4x

5x

6x

7x

0X

4X

2X

6X

7X

3X

5X

1X

'

53' cot 3 /8
128

'

'

'

'

'

'

2

Fig. 3. LLM factorization converted to a scaled form.

S =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

A B C D A D C B
B E F G B G F E
C F H I C I H F
D G I J D J I G
A B C D A D C B
D G I J D J I G
C F H I C I H F
B E F G B G F E

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(2)

In order to achieve sufficient precision of scaling, the above
values are scaled by 211 before conversion to integers. In turn,
the scaling step:

SXyx = (Xyx ∗ Syx) >> 2 . (y, x = 0, . . . , 7) (3)

leaves 9 bits of precision to serve as a fixed-point ”mantissa”
for subsequent processing.

Following scaling, we add bias to the DC term:

SX ′
00 = SX00 + 212−1 , (4)

which ensures proper rounding at the final stage of the trans-
form, where we simply downshift everything by 12 bits (where
9 bits is our fixed-point ”mantissa” + 3 bits are added by LLM
transform stages).

The overall structure of our 8x8 IDCT algorithm is de-
picted in Fig. 1. It can be seen that we need at most 24
bits of precision for all intermediate values between transform
stages.

VI - 82

Table 1. Constant factors and multiplier-less algorithms used in our IDCT approximation.

Factor Value Algorithms: x = x ∗ [A, . . . , J]>>2; x = x ∗ [β′, δ′]; y = x ∗ [ε′, η′]; Addi-
tions Shifts

A 2048 x<<9; 0 1
B 1703 x2 = −x + (x<<6), x3 = x2 + (x2<<3), x4 = (x + x3)<<1, x5 = (x3 + x4)>>2; 4 4
C 2676 x2 = −x + (x<<3), x3 = −x + (x2<<5), x5 = x3 + (x3<<1); 3 3
D 2408 x2 = x + (x<<5), x3 = x2<<1, x4 = x + x3, x5 = x3 + (x4<<3); 3 3
E 1416 x2 = x<<4, x3 = x2<<3, x4 = x3 − x2, x5 = x + x4, x6 = x3 + (x5<<1); 3 3
F 2225 x2 = x<<5, x3 = x + (x2<<2), x4 = x3<<4, x5 = x2 + x3, x6 = (x4 + x5)>>2; 3 4
G 2003 x2 = x<<4, x3 = x2 − x, x4 = −x3 + (x2<<5), x5 = (x3>>2) + x4; 3 3
H 3496 x2 = x<<3, x3 = x2 − x, x4 = x3<<1, x5 = x2 + x4, x6 = −x5 + (x4<<6); 3 3
I 3147 x2 = x<<9, x3 = −x + (x<<4), x4 = x2 + x3, x5 = x2 + x4, x6 = (x5>>2) + x4; 4 3
J 2832 x2 = x<<2, x3 = x2 − x, x4 = x3<<6, x5 = x2 + x4, x6 = x5 + (x2<<7); 3 3

β′ 53/128 y = x, x2 = x>>2, x3 = x + x2, x4 = x2 − x, y = (x3>>5) − (x4>>1); 3 3
δ′ 151/128 x2 = x − (x>>4), x3 = x2 + (x>>7), y = x2>>2;x = y + x3; 3 3
ε′ 15/32

η′ 171/256 x2 = (x>>3) − x;x3 = x + (x2>>3); y = x3 − (x3>>2); 3 3

Table 2. Accuracy measurements and complexity of our IDCT approximation.

Implementation Precision Complexity
p
(1)

max eyx

(0.06)
N

(0.02)
max |dyx|
(0.015)

M
(0.0015)

1D 2D

Multiplier-based 1 0.0278 0.0191 0.0043 0.000223 8m, 26a, 6s (K+128)m, 417a, (K+160)s
Multiplier-less 1 0.0277 0.0191 0.0044 0.000205 44a, 18s Km, 705a, (K+352)s

Numerical values of scale-factors, factors inside the trans-
form, and possible multiplier-less algorithms for computation
of products are presented in Table 1.

It can be seen that all factors used inside the transform
are just 8-bit quantities, which reduces dynamic range of in-
termediate values inside the 1D transforms, and enables its
efficient programming and execution on many of the existing
DSP platforms.

The multiplier-less factorizations, presented in Table 1,
show that each of such multiplications need at most 3 addi-
tions and 3 shifts to compute, making the entire 8-point trans-
form computable using just 44 additions and 18 shifts. This
modification may be appealing for custom circuit designs.

3. PERFORMANCE OF OUR PROPOSED
ALGORITHM

As required by MPEG standards, we measure the performance
of our IDCT approximation by computing the IEEE 1180 -
ISO/IEC 23002-1 metrics described earlier. In Table 2, we
report the worst case results for each of the metrics measured
across all tests. We report these metrics for both multiplier-
based and multiplier-less implementations of our approxima-
tion. As shown in the table, all results fall within the toler-
ances acceptable for use in MPEG video coding standards.

It can also be noted that multiplier-based and multiplier-less
implementations have almost the same performance.

We estimate implementation costs of our algorithms in
Table 2 in terms of 1D and 2D complexities. 1D complex-
ity means complexity of executing our 8-point scaled LLM
transform, and 2D complexity includes complexities of 16 it-
erations of 1D transforms plus complexity of scaling and right
shifts at the end of the transform. In all cases the numbers of
multiplications denoted by ’m’, the numbers of additions – by
’a’, and the numbers of shifts – by ’s’.

Parameter ’K’ in Table 2, denotes the number of non-zero
DCT coefficients on the input of the IDCT. Since typically, in
video decoding process, input data to IDCT originate from a
list of non-zero coefficients in the 8x8 block, it is often pos-
sible (and convenient) to execute scaling only for those non-
zero coefficients.

Furthermore, in many image and video codecs, it is also
possible to simply merge factors involved in IDCT scaling
with the factors used by the corresponding inverse-quantiza-
tion process. In such cases scaling can be executed in-place,
without taking any extra resources.

VI - 83

Drift observed using different IDCTs in H.263 decoder
Encoder: P-frames only, QP=1, Annex T, Ref. IDCT

Sequence: News (CIF, 300 frames)

44

45

46

47

48

49

50

0 50 100 150 200 250 300

Frame #

PS
N

R
(Y

)

Ref. IDCT
Our IDCT
MPEG-2 TM5
Xvid
H263 Ann. W

Drift observed using different IDCTs in MPEG-2 decoder
Encoder: P-frames only, quant_scale=1, W[i][j]=16, Ref. IDCT

Sequence: News (CIF, 300 frames)

38

40

42

44

46

48

50

52

54

56

58

0 50 100 150 200 250 300

Frame #

PS
N

R
(Y

)

Ref. IDCT
Our IDCT
MPEG-2 TM5
Xvid
H263 Ann. W

Fig. 4. IDCT drift study using H.263 (left) and MPEG-2 (right) video codecs.

4. DRIFT PERFORMANCE

In order to measure IDCT drift performance we have used
reference software encoders (employing floating-point DCTs
and IDCTs) of H.263, MPEG-2, and MPEG-4 P2 standards.
In order to emphasize IDCT drift effects, we have also:

• forced all frames after the first one to be P-frames;

• disabled Intra-macroblock refreshes;

• forced QP = 1 (quant scale = 1, and w[i, j] = 16 in
MPEG 2,4) for all frames;

In decoder we have used our IDCT approximations, and
for comparison, we have also run tests for the following ex-
isting IDCT implementations:

• MPEG-2 TM5 IDCT - fixed-point implementation in-
cluded in MPEG-2 reference software [6],

• XVID IDCT - a high-accuracy fixed-point implemen-
tation of IDCT in XVID opens source implementation
of MPEG-4 P2 codec [7], and

• H.263 Annex W IDCT - idct algorithm specified in An-
nex W of ITU-T Recommendation H.263 [5].

The results of our tests for sequence ”News”, using H.263
and MPEG-2 codecs, are shown in Fig. 4 (data shown only
for our multiplier-based implementation; but both multiplier-
based and multiplier-less algorithms are almost undistinguish-
able drift-wise).

It can be seen, that even under such extreme test condi-
tions the magnitude of drift using our IDCT algorithm is ap-
proximately 0.5dB in H.263 test and approximately 2dB in
MPEG-2 test. In comparison, MPEG-2 TM5 IDCT shows
close to 3dB and 12dB drift correspondingly. The results
collected using other standard test sequences (Foreman, Bus,
Mobile) show consistent drift behavior.

5. SUMMARY

In the paper we have presented the design of a low-complexity,
low-drift fixed-point 8x8 IDCT design, suitable for use in
existing MPEG and ITU-T video standards. Our 1D scaled
transform needs 8 multiplications by 8-bit integer factors, and
it is convenient for both software and hardware implementa-
tions.

6. REFERENCES

[1] C. Loeffler, A. Ligtenberg, and G. S. Moschytz, Prac-
tical fast 1-D DCT algorithms with 11 multiplications,
in Proc. IEEE International Conference on Acoustic,
Speech, and Signal Proc. (ICASSP), vol. 2, pp. 988-991,
Feb. 1989.

[2] ISO/IEC JTC1/SC29/WG11 N7815 [23002-1 FDIS] In-
formation technology - MPEG video technologies -
Part 1: Accuracy requirements for implementation of
integer-output 8x8 inverse discrete cosine transform.

[3] CAS Standards Committee of the IEEE Circuits and
Systems Society, IEEE Standard Specifications for the
Implementations of 8x8 Inverse Discrete Cosine Trans-
form, 1991.

[4] ISO/IEC 14496-2:2001 Information technology - Cod-
ing of audio-visual objects - Part 2: Visual, July, 2001.

[5] ITU-T Recommendation H.263: Video Coding for Low
Bit Rate Communication, 01/2005.

[6] MPEG-2 TM5 source code and documentation:
http://www.mpeg.org/MPEG/MSSG/tm5/

[7] XVID open source implementation of MPEG-4 ASP:
http://downloads.xvid.org/

VI - 84

