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Abstract— Semi-fragile authentication schemes are found to
be useful to maintain authentication in the event of certain
allowed manipulation of source content. This paper focuses
on a quantization based algorithm, and extends it to more
general uniform quantizers. Earlier work is found to be a special
case of our generalized solution which provides more useful
guideline when selecting quantizer for this type of authentication.
Experimental results veri ed our analytical conclusion.

Index Terms— Authentication, Uniform scalar quantizer, Re-
quantization

I. INTRODUCTION

Many semi-fragile authentication schemes [1] have been
proposed to be resistant to certain manipulation of source
content. One type of these schemes is resistant to transcoding
based on re-quantization [2][3].

Figure 1 shows the set-up of an authentication system that
is resistant to quantization-based compression. At the signing
stage, (a subset of) the raw source coef cients are quantized
by a coarse quantizer Qa (with quantization step size sa).
The resulting values Qa(x) are converted into a digest d =
H(Qa(x)), where H is an appropriate hash function. This
value d is subsequently signed (not shown in the gure) using
a private key Kr and the signature EKr

[d] is transmitted to
the receiver. The values y = Qa(x) constitute the stream of
signed coef cients. This signal y may be subjected to further
quantization with a quantizer Qe, resulting in coef cients
z = Qe(y). The receiver veri es the authenticity of a received
signal z by repeating the procedure at the encoder and com-
paring its computed hash value with the signature d provided
by the signer.

The key for this type of authentication scheme to be valid is
the following exact reconstruction property rst found in [2].

De nition 1 (Exact Reconstruction): A pair of quantizers
(Q1,Q2) is said to have the exact reconstruction (ER) property
if and only if for all x and z = Q2(x)

Q2Q1(z) = z. (1)
One easily veri es that if the pair (Qe,Qa) has the exact re-

construction property, then the authentication scheme sketched
above will work.

Note that the subset of coef cients used for authentication
is quantized by Qa before the encoding stage. The quality
degradation is always there since sa is in practice always
larger than se. This might raise the obvious question why any
second coding phase with quantizer Qe is needed. However, in
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Fig. 1. Authentication system for quantization-based compression.

JPEG or video compression practice, the quantizer step size is
selected at the level of macro-blocks (minimally) and applies
to a group of coef cients. This group of coef cient includes
both coef cients that are used for authentication and those that
are not. The rate-distortion tradeoff still needs to be managed
by the step size selection for the coef cients that are not used
for the authentication.

Previous work [2][3] has reported on this method in the
context of compression systems that rely on a speci c scalar
quantizer with the reconstruction level at the absolute centroid
of quantizer bins. In video compression, especially for inter
frames, the location of reconstruction level within quantizer
bin may vary due to rate-distortion considerations. In this
paper, we investigate this exact reconstruction property for
general uniform scalar quantizer. This analysis provides better
guideline on how to select Qa that preserves the exact-
reconstruction property in the context of various compression
scenarios (with different Qe).

In the next section, we start with de ning the generalized
uniform quantizer and follow with derivation of the general
condition for exact reconstruction. In Section II-D, we provide
discussions in the context of different compression standards.
Experimental results are presented in Section III. We conclude
this paper with a summary of the results in Section IV.

II. GENERALIZED ANALYSIS ON EXACT

RECONSTRUCTION

In this section we prove our main result on conditions
for exact reconstruction. We start by providing a model for
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quantization.

A. Dead-Zone Quantizers

A general dead-zone scalar quantizer Q is often modeled as
follows. Given input x, quantization output q is produced as

q = Q(x) =

{
sign(x)

⌊ |x|
s

+ ε

⌋
,
|x|
s

+ ε > 0

0, otherwise
, (2)

where s is the quantizer step size, and ε controls the size of
the deadzone. Typically, ε ∈ [0, 1), and it also represents how
the division is rounded. For example, ε = 0 or 0.5 are often
used for deadzone sizes of 2s or s, respectively. The quantizer
interval for quantizer bin q can be obtained as:

Interval =

⎧⎨
⎩

[−(1 − ε)s, (1 − ε)s), q = 0
[(q − ε)s, (q + 1 − ε)s), q > 0
[(q − 1 + ε)s, (q + ε)s), q < 0

. (3)

Reconstruction is obtained by inverse quantization Q−1

which is de ned as:

x̂q =

⎧⎨
⎩

0, q = 0
(q − ε + δ)s, q > 0
(q + ε − δ)s, q < 0

. (4)

Here δ ∈ (0, 1) to make sure the reconstruction level resides
within its corresponding quantizer bin.

B. Uniform Quantizers

In order to ease our subsequent mathematical analysis, we
will slightly modify our de nition of a quantizer.

First, the exact reconstruction property as de ned in De -
nition 1 has a slightly different notion of a quantizer than as
de ned in the previous section. More precisely, in De nition 1
quantizers are assumed to be a combination of a quantizer
and an inverse quantizer as above. As this is all we need, we
will assume in the remainder of this paper that our quantizers
include reconstruction.

Second, dead-zone quantizers are mathematically dif cult
to analyze in the neighborhood of 0. However, suf ciently far
away from 0, dead-zone quantizers behave uniformly (to be
de ned below). Therefore we will study uniform quantizers
rst and comment on the impact of the non-uniform behavior

around 0 later. We are now able to state our de nition of a
uniform quantizer.

De nition 2 (Uniform Quantizer): A uniform quantizer
Q(x) = Q(s, ε, δ)(x) with parameters s, ε and δ is de ned
by

Q(x) = (
⌊ |x|

s
+ ε

⌋
− ε + δ)s. (5)

Note that a uniform quantizer partitions the set of real
numbers R in intervals Iq = [Bq, Bq+1] of size s, where
Bq = (q − ε)s. Moreover, elements of Iq are reconstructed at
the point Bq + δs.

C. Condition for Exact Reconstruction

We now derive the general condition as de ned in De n-
ition 1. Equation (1) implies that x is a reconstruction level
of Q2. Denoting Bj

2 as the left boundary of bin j for Q2,
we have, x = Bj

2 + δ2s2. Denoting y = Q1(x), we have
y = Bi

1 + δ1s1. Note that i and j are the quantized coef cient
index of x for Q1 and Q2, respectively.

Equation (1) also implies that x should be within the interval
of bin i for Q1 and that y should be within the interval of bin
j for Q2. Mathematically, we have{

Bi
1 ≤ x < Bi

1 + s1

Bj
2 ≤ y < Bj

2 + s2
. (6)

Plugging in x and y with some manipulation, we have{
δ2s2 − s1 < Bi

1 − Bj
2 ≤ δ2s2

−δ1s1 ≤ Bi
1 − Bj

2 < s2 − δ1s1
. (7)

Writing Bi
j = isj−εjsj , D(i, j) = is1−js2, C = ε1s1−ε2s2

we derive the condition for exact reconstruction of the pair
(i, j) as:

max(δ2s2−s1,−δ1s1) < D(i, j)−C < min(δ2s2,−δ1s1+s2).
(8)

With this reformulation the exact reconstruction property
can now be formulated as follows:

for every index j there exists an index i such that
D(i, j) satis es the inequalities in (8).

Next we investigate the conditions on the quantizer para-
meters for this to hold. To ease discussion we de ne Ll =
max(δ2s2 − s1,−δ1s1) and Lr = min(δ2s2,−δ1s1 + s2).

1) As −δ1s1 ≤ δ2s2 and δ2s2−s1 ≤ −δ1s1 +s2, we have
Ll ≤ Lr. Therefore the interval I = [Ll, Lr] is properly
de ned.

2) Given j, the values of D(i, j) is invariant in i modulo
s1. Therefore, a solution in i exists if and only if D(i, j)
mod s1 ∈ I .

3) A necessary and suf cient condition for this to hold is
that the interval I has size s1.

4) The interval I has size s1 if and only if Ll = δ2s2 − s1

and Lr = δ2s2.
5) This can be re-written as s1 ≤ δ1s1 + δ1s2 ≤ s2.

Theorem 1: The exact reconstruction property holds if ei-
ther

1) δ1 + δ2 = 1 and s2 ≥ s1.
2) δ1 + δ2 < 1 and s2 ≥ 1−δ1

δ2
s1.

3) δ1 + δ2 > 1 and s2 > δ1
1−δ2

s1.
Proof: Case 1 is trivial. Case 2 is proved by observing

that the right hand side inequality is automatic and that only
the left hand side needs to be enforced. Similar for Case 3,
but with left and right reversed.

Table I summarizes the three conditions, upon satisfaction
of any one of which, the exact reconstruction property is
preserved.

For cases of δ1 + δ2 �= 1, we can further identify the (i, j)
pairs that satisfy or fail (8), which indicates whether the exact
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Condition Quantizer Step size

1 δ1 + δ2 < 1 s1 ≤ δ2s2/(1 − δ1)
2 δ1 + δ2 = 1 s1 ≤ s2

3 δ1 + δ2 > 1 s1 < (1 − δ2)s2/δ1

TABLE I

THREE SUFFICIENT CONDITIONS THAT PRESERVE EXACT RECONSTRUCTION

PROPERTY.

reconstruction property holds or not respectively. To simplify
the discussion, we assume ε1 = δ1. Since i and j are related
as i = �js2/s1 + δ1�, we have

D =
⌊

js2

s1
+ δ1

⌋
s1 − js2. (9)

Given that we only consider cases when s1 ≤ s2, we can set
js2 = ns1 + τ , where n, τ ∈ Z∗ and τ ∈ [0, s1). Considering
it as a Diophantine equation with j and n as variables, for it to
have integral solutions, τ can only assume values in a subset
of [0, s1), that is, Γ = {τ ∈ [0, s1)|gcd(s1, s2) divides τ}.
Eq (9) becomes

D =
⌊

τ

s1
+ δ1

⌋
s1 − τ. (10)

In the case of δ1 + δ2 < 1, plugging (10) into (8), we have

−δ2s2 ≤
⌊

τ

s1
+ δ1

⌋
s1 − τ ≤ δ1s1. (11)

There are only two possibilities for the rounding term. First,
if 1 ≤ τ/s1 + δ1 < 2, it can be derived that τ has to be in the
region (1 − δ1)s1 ≤ τ < s1. Second, if 0 < τs1 + δ1 < 1, it
can be derived that τ has to be in the region 0 ≤ τ ≤ δ2s2.
Joining these two regions, the range T of τ that satis es (8)
is

T = {τ ∈ Γ|0 ≤ τ ≤ δ2s2 ∪ (1 − δ1)s1 ≤ τ < s1}. (12)

Equivalently, the range of τ that fails (8) is

T̃ = {τ ∈ Γ|δ2s2 < τ < (1 − δ1)s1}. (13)

Apparently, Condition 1 in Table I leads to empty T̃ and is
suf cient to preserve the exact reconstruction property.

In the case of δ1 + δ2 > 1, following the same derivation ,
τ needs to fall into the set T below to satisfy (8)

T = {τ ∈ Γ|0 < τ < (1−δ1)s1 ∪ s1−(1−δ2)s2 < τ < s1}.
(14)

And τ needs to fall into the T̃ below to fail (8)

T̃ = {τ ∈ Γ|(1 − δ1)s1 ≤ τ ≤ s1 − (1 − δ2)s2}. (15)

Again, Condition 3 in Table I leads to empty T̃ and is suf cient
to preserve the exact reconstruction property.

It is easily seen that these sets are determined given any
de ned Q1 and Q2. The identi cation of these sets makes it
possible for us to relax the conditions of exact reconstruction
given a particular source content. In particular, the exact
reconstruction property is preserved as long as T̃ is empty.
Some of the examples will be shown shortly in Section III.
We next discuss some speci c cases.

D. Discussion on Speci c Cases

In JPEG compression, we have ε1 = δ1 = 1/2. To preserve
the exact reconstruction property, the authentication quantizer
is chosen as ε2 = δ2 = 1/2. This is the result presented in [2],
which represents a special case of Theorem 1.

In general image/video compression, ε and δ may be
selected from [0, 1) and (0, 1), respectively, based on rate-
distortion considerations. For example, MPEG-1/2/4 recom-
mends ε1 = 0, δ1 = 1/2 for quantizers of inter frames. In this
case, we know from Theorem 1 that the only quantizer we can
select for authentication that resistants to quantization with any
s1 ≤ s2, is the one with δ2 = 1/2. Note that since ε1 �= δ1 the
choice of s1 is subject to the additional condition δ1s1 ∈ Z. In
another example, H.264 recommends that for quantizer of intra
frames ε1 = δ1 = 1/3 and for inter frames ε1 = δ1 = 1/6.
From Theorem 1 it follows that only one quantizer can be
chosen for each case, viz. the one with ε2 = δ2 = 2/3, 5/6,
respectively.

III. EXPERIMENTAL RESULTS

The experiments are based on the system shown in Fig-
ure 1 with Q1 and Q2 mapping to Qe and Qa respectively.
Source coef cients x are from a Laplacian distribution. In
compression practice, only integral reconstruction levels are
used. Whenever ε1 �= δ1, often times a rounding-down is used
at the inverse quantizer. However, this rounding affects the
exact reconstruction condition. To avoid this complication, we
assume ε1 = δ1, which guarantees that there is no rounding
at the inverse quantizer. We will use this setup in all the
experiments. We also use a xed s2 = 16, the step size for the
quantizer used in authentication, and consider all coef cients
that are eligible for authentication, that is, all the coef cients
that are quantized to non-zero values by Q2. We compute
the percentage of these coef cients that preserve the exact
reconstruction property.

First we look at a speci c case with xed s1 = s2 − 1.
Figure 2 shows that 100% exact reconstruction happens only
for the case that δ1 + δ2 = 1. To further investigate whether
the above is true for all s1 ≤ s2, we plot the cases with xed
δ1 and varying δ2 in Figure 3. We see that for all cases of
s1 ≤ s2, 100% exact reconstruction is achieved only when
δ1 + δ2 = 1. For all other cases when δ1 + δ2 �= 1, there are
always cases of s1 that the exact reconstruction property is
not preserved.

Inspecting a speci c case of δ1 + δ2 < 1, we refer to
Figure 3(b) when δ1 = δ2 = 1/3. We know from Table I
that the maximum s′ that preserves the exact reconstruction
for all s1 ≤ s′ is δ2s2/(1 − δ1) = 8. However, we observe
that exact reconstruction also holds at s1 = 9, 12. For s1 = 9,
we know from (13) that τ needs to be in (16/3, 6) to fail
the exact reconstruction test. However, there is no integer in
that region, thus making s1 = 9 also preserving the exact
reconstruction property. For s1 = 12, we know from (13) that
τ needs to be in (16/3, 8) to fail the exact reconstruction
test. The region includes two integers, 6 and 7. However,
gcd(s1, s2) = gcd(12, 16) = 4 does not divide either 6 or
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Fig. 2. Ratio of coef cients that achieve exact reconstruction (ε1 = δ1).

7, leading to empty Γ. This also makes s1 = 12 preserving
the exact reconstruction property.

Inspecting another speci c case of δ1 + δ2 > 1, we refer to
Figure 3(a) when δ1 = 1/2, δ2 = 2/3. We know from Table I
that the maximum s′ that preserves the exact reconstruction
for all s1 ≤ s′ is 	(1− δ2)s2/δ1
 = 11. However, we observe
that exact reconstruction property also holds at s1 = 12. For
s1 = 12, we know from (15) that τ needs to be in [6, 6 2

3 ]
to fail the exact reconstruction test. The region includes one
integer 6, which has been shown before that leads to empty Γ
and thus preserves the exact reconstruction property.

IV. CONCLUSION

We have proposed in this paper a more general guidance
on quantizer selection for authentication. For cases that are
applicable to H.264 intra and inter quantization, we nd the
only workable quantizer for authentication is ε2 = δ2 =
2/3, 5/6, respectively. We have identi ed the range of s1 that
can preserve exact reconstruction in the cases of δ1 + δ2 �=
1. For cases when exact reconstruction does not hold, we
have also identi ed the set of coef cient values that fails the
exact reconstruction test. This provides alternative selections
of Q2 (the quantizer used for authentication) when there are
different considerations on the tradeoff between the authenti-
cation capability and the degree of resistance to quantization-
based compression. Experimental results have veri ed all the
ndings from the analysis.
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Fig. 3. Ratio of coef cients that achieve exact reconstruction (ε1 = δ1).
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