
STREAM AUTHENTICATION BASED ON GENERLIZED BUTTERFLY GRAPH

Zhishou Zhang1,2, John Apostolopoulos3, Qibin Sun1, Susie Wee3 and Wai-Choong Wong2

1Institute for Infocomm Research (I2R), Singapore

2Department of ECE, National University of Singapore, Singapore
3Hewlett-Packard Labs, USA

ABSTRACT

This paper proposes a stream authentication method based on
the Generalized Butterfly Graph (GBG) framework. Compared
with the original Butterfly graph, the proposed GBG graph
supports an arbitrary overhead budget and number of packets.
Within the GBG framework, the problem of constructing an
authentication graph is considered as a design problem: Given
total number of packets, packet loss rate, and overhead budget,
we show how to design the graph (number of rows and columns
and edge allocation among nodes) to maximize the expected
number of verified packets. In addition, we also propose a new
evaluation metric called Loss-Amplification-Factor (LAF),
which measures the extent to which the authentication method
exacerbates the effective packet loss rate. Experimental results
demonstrate significant performance improvements over
existing authentication methods like EMSS, Augmented Chain,
and the original Butterfly.

Index Terms— Stream authentication, media security

1. INTRODUCTION

Desirable security services for emerging media streaming
applications include assurance of data integrity, source
authentication, and non-repudiation. Streaming data usually
contains a long sequence of packets and each packet has a
deadline before which it must be received, verified, and
decoded. In addition, streaming data is often afflicted by, and
tolerable to, a certain level of loss. Straightforward application
of cryptographic digital signature [1] does not provide an
effective or efficient solution for streaming data. One extreme
case is to generate a single signature for all the packets; while
this leads to very low overhead, it is not robust against packet
loss because even one lost packet makes all the other packets
unverifiable. The other extreme case is to generate and transmit
a signature for each packet. This approach is resilient to losses,
but has very high overhead (signature size is usually on the
order of 100 bytes) and very high complexity (signing and
verifying operations have high complexity).

Another common approach of stream authentication
amortizes a signature among a group of packets connected as a
directed acyclic graph (DAG). Each node corresponds to a
packet and an edge from node A to B appends A’s hash to B.
Note that a hash requires much lower overhead (about 20 bytes)
and much lower computation than a signature. The graph

typically has one packet carrying the signature and each node
has at least one path to the signature packet. At the receiver,
lost packets are removed from the graph and a packet is
verifiable if it has at least one path to the signature packet. The
simple hash chain [2] arranges packets into one row, where
each packet has an edge to the previous packet and the first
packet is signed. It has low overhead as each packet has only
one outgoing edge, however it also has low robustness against
packet loss as any loss will cut the chain and subsequent
packets are not verifiable. To increase the robustness, Efficient
Multi-Chained Stream Signature (EMSS) [3], Augmented
Chain [4], and Butterfly [5] proposed different ways of adding
redundant edges to the graph. In [5], we have experimentally
validated that the Butterfly has very good robustness against
network loss, due to high fault-tolerance of butterfly graph.
Specifically, the butterfly architecture maximizes the
independence of the dependencies for a given packet. However,
the Butterfly graph has its own limitations: (1) fixed overhead
due to its fixed topology, e.g., given an arbitrary overhead
budget it is not clear what is the best way to add/ remove edges;
(2) total number of packets N equals NR(log2NR+1), where NR is
the number of rows; (3) the signature packet size grows with N,
as it contains both the signature and the hashes of all packet in
the first column. For large N the signature packet may be larger
than the network MTU and therefore would be fragmented for
transmission -- increasing its loss probability and negatively
impacting all of the packets in the graph.

In this paper, we try to preserve the Butterfly graph’s
valuable robustness to losses, while extending it to overcome
the above 3 limitations, and refer to this framework as the
Generalized Butterfly Graph (GBG). The GBG framework
supports a wide range of possible authentication graphs, and the
problem of finding the best authentication graph for a given
situation corresponds to a graph design problem. The input
parameters include total number of packets N, packet loss rate
(p), and overhead budget (RO). In this paper we assume IID
losses for simplicity. The output parameters include the number
of rows and columns (NR, NC), edge placement, and number of
transmissions (M) of the signature packet. The signature packet
may be transmitted multiple times to reduce the probability of
loss. RO accounts for the (multiple) transmissions of the
signature packet and overhead data corresponding to edges in
the graph. The evaluation metric is verification percentage (or
verification probability), defined as the percentage of received
packets which are verified. In addition, we also propose a new
evaluation metric called the Loss-Amplification-Factor (LAF),

VI - 1211-4244-1437-7/07/$20.00 ©2007 IEEE ICIP 2007

defined as the ratio of effective loss rate over packet loss rate.
The effective loss rate accounts for both lost packets and
packets which are received but unverifiable, i.e., p+(1-p)(1-V),
where p is packet loss rate and V is the verification percentage.
For example, a value of 1.5 means the authentication technique
causes the effective loss rate to be 50% higher than when no
authentication is used. Ideally, the LAF would equal 1, i.e., all
received packets are verified. The closer the LAF for an
authentication technique is to 1 the greater its robustness to
losses.

The rest of this paper is organized as follows. Section 2
analyzes the Butterfly graph to find a cost-effective edge
placement strategy given an overhead budget RO. Section 3
examines how to relax the Butterfly graph to support arbitrary
number of packets and to confine the signature packet within an
MTU. Based on this analysis, we propose in Section 4 the
Generalized Butterfly Graph (GBG) framework and describe
how to design an authentication graph for a given situation.
Section 5 evaluates the proposed method against existing
methods and Section 6 concludes the paper.

2. ANALYSIS OF BUTTERFLY: EDGE PLACEMENT

The butterfly graph has a fixed topology and therefore fixed
overhead. This section studies the problem of how to place the
edges in the graph given an arbitrary overhead budget RO. To
gain more insight into this problem, we implemented two
greedy algorithms to progressively add edges (one at a time) to
the authentication graph, starting from the initial state depicted
in Fig. 1. Initially, the packets are arranged into the same
matrix as in the Butterfly, however each packet is connected to
only one packet in the previous column. Then, at every step, the
greedy algorithm computes the overall verification percentage
for all possible new edges and adds the edge that provides the
largest gain. When there are multiple candidate edges with the
same gain, then one of the candidate edges is picked randomly.
The first greedy algorithm, referred to as unconstrained greedy,
allows an edge from one packet to any packet in the previous
column. The second algorithm, referred to as constrained
greedy, allows only the edges that appear in original Butterfly.

Fig. 1 – Initial state of greedy algorithms (with 12 packets)

Fig. 2 compares the LAF of the two greedy algorithms with
32 packets (NR=8 and NC=4), where 24 extra edges are
progressively added, starting from the initial state shown in Fig.
1. One observation is when all 24 edges are added, each packet
(except packet in the first column) has exactly 2 outgoing edges
with both unconstrained and constrained greedy algorithms.
Another observation is a packet’s verification probability is
maximized if it is directly connected to two packets that are
independent of each other for verification (i.e., independence
property). The unconstrained greedy has lower LAF when the
number of added edge 15, while the constrained greedy has
slightly lower LAF when >15. When is small, the

unconstrained greedy allows more than 2 packets to be
connected to a packet with higher verification probability,
without violating the independence property. When is large, it
is no longer possible for the unconstrained greedy to find edges
that satisfy the independence property, while the constrained
greedy algorithm can still find such edges. Therefore, the
butterfly-constraint produces slightly worse performance in the
middle and slightly better performance at the end. We will
apply this constraint for edge placement. When the given
overhead budget is less than 2 edges per packet, the edges are
placed in the middle column first, and then progressively added
to the outer columns.

Fig. 2 – LAF of graphs built with unconstrained and

constrained greedy
From the above experiment, the butterfly graph provides

the best performance of all the graphs tested given an allocation
of 2 outgoing edges per node for all nodes except the first
column. Next, we examine the best edge placement order
beyond 2 edges per packet. Fig. 3 shows the benefit (increment
in overall verification percentage) if we place one extra edge
into different columns of a butterfly graph with 17 columns. It
is most beneficial to place the extra edge in column-9, followed
by column-8, 10, 7, 11, 6, 12, 5, 13, 4, 3, 14, 2, 15, 1, and 16.
Note that the benefits for columns 4 to 13 are almost the same.

Fig. 3 – Increment in verification percentage when 1 edge is
added to different columns of a butterfly with 17 columns.

3. RELAXING THE BUTTERFLY STRUCTURE

The goal of this section is to overcome the second and third
limitations of the Butterfly graph. We examine how to relax the
Butterfly structure to (a) support an arbitrary number of packets
N, and (b) to confine the signature packet to within one MTU.

In the original Butterfly graph, the signature packet grows
with the total number of packets N, as it contains the digital
signature and the hashes of all packets in the first column. If the
signature packet is too big to fit in one MTU, it has to be
segmented for transmission, which increases its loss probability
and directly impacts the authentication probability for all of the
packets. Alternatively, when N is large, we can divide the N
packets into smaller groups and form a butterfly graph within
each group. However, this simple approach has high overhead

VI - 122

and complexity, since there is one signature packet per group
and signature packet is costly in terms of computation and
transmission. Also note that each signature packet needs to be
transmitted multiple times to avoid loss. We have found that we
can overcome this problem, without incurring a loss in
performance, by limiting the number of rows (NR) so that the
signature packet is confined within one MTU, and the extra
packets are appended at the end of the graph by adding
additional columns. Any consecutive log2NR+1 columns taken
from this relaxed graph constitute a Butterfly graph. Fig. 4
shows an example with NR=4 and NC=8. Note that any 3
consecutive columns form a Butterfly graph of 12 packets.
Therefore, to support an arbitrary number N, we can first
construct a butterfly graph, and then append extra packets to the
end of the butterfly graph.

Fig. 4 – Relaxed Butterfly graph with 4 rows and 8 columns

In the Butterfly graph, all packets within a column have
the same verification probability, which drops for the first 2
columns and then becomes flat for all subsequent columns. The
proposed extension also has this property, as shown in Fig. 5
which compares the verification probability of packets from
different columns in a Butterfly (128x8) and a relaxed Butterfly
graph (64x16). It shows that the extra columns in the relaxed
butterfly have flat verification probability.

Fig. 5 – Verification percentage of packets in different

columns of Butterfly and Relaxed butterfly graph (p=0.1)

4. PROPOSED GENERALIZED BUTTERFLY
GRAPH

This section proposes the Generalized Butterfly Graph (GBG)
framework, and describes how to design an efficient
authentication graph, based on the prior analysis.

Given N packets, a generalized butterfly graph is
constructed as a matrix with NR rows and NC columns, where
NR=2K and RC NNN . A packet in r-th row and c-th
column is referred to as Pr,c, where 0 r<NR and 0 c<NC. The
signature packet Psig contains the signature and hashes of all
packets in the first column. A packet Pr,c is connected to Pr,c-1
and is possibly connected to other packets in column c-1. Note
that the GBG framework covers many possible graphs. For
instance, when NR=1, the GBG graph is the same as Simple
Hash Chain; when NR=N, the GBG graph is equivalent to an

Authentication tree [6] with degree N. In addition, if
N=NR(log2NR+1), the GBG graph is exactly the same as a
Butterfly graph. In the proposed GBG framework, we examine
how to design an efficient authentication graph. The input
parameters include total number of packets N, overhead budget
RO, packet loss rate p, and maximum transmission unit (MTU),
and the output parameters include NR and NC, number of
transmissions of signature packet M, and graph topology (edge
placement). The following subsections discuss how to choose
appropriate values for these output parameters.

4.1. Number of rows and columns (NR and NC)

The value of NR has two implications: it determines the size of
the signature packet which contains signature (S bytes) and
hashes (H bytes per hash) of all packets in the first column; it
also affects the robustness against network loss. For instance, if
NR is too big, the signature packet has to be fragmented for
transmission, which negatively affects the overall verification
probability. On the other hand, if NR is too small, a burst loss of
length NR may cut the graph into two halves and the second half
cannot be verified anymore. Therefore, NR should be chosen to
be the maximum number satisfying two conditions: NR=2K and
S+NRH MTU.

4.2. Number of transmissions of signature packet M

If the signature packet is lost, all the other packets are not
verifiable, and therefore it has to be transmitted multiple times
to increase its probability of being delivered. However, every
transmission leads to additional overhead. For instance, if the
signature packet is transmitted M times, the overhead budget
left for the other packets is RO-M(S+NRH) bytes. A small value
of M leads to high loss probability of the signature packet,
while a large value of M leads to fewer edges in the graph. A 1-
D search can be performed to find the optimal value for M, e.g.,
Fig. 7 shows the verification percentage with different values of
M. (Experiment setting: N=1024, RO= 40,960 bytes, S=128,
H=20, MTU=1500 and p=0.1).

Fig. 6 – Verification percentage for various values of M

4.3. Edge placement

Given a NRxNC GBG graph, the initial graph topology (as in
Fig. 1) and M transmissions of signature packet occupy Rinit =
M(S+NRH)+(N-NR)H bytes. Therefore, the remaining overhead
budget is RO-Rinit, corresponding to HRRe initO extra
edges which can be placed using the algorithm illustrated in

Fig. 7. The extra edges are placed in round-robin manner,
starting from packets in the middle column and progressively
going outwards, as motivated by Fig. 3.

VI - 123

Note that the receiver can deduce the graph topology,
given the values of N, NR and RO. Therefore, these three
parameters are signaled in a header in the signature packet. The
overhead of these three parameters is negligible, compared with
hashes and signatures.

Fig. 7 – Algorithm to allocate e extra edges in (NRxNC)
GBG graph

5. EXPERIMENTAL RESULTS

To evaluate the performance of the proposed GBG
authentication graph, we implemented 4 authentication graph
approaches and measured their performance in the following
setting: N=1024, p=0.01~0.2, MTU=1500, S=128 and H=20.
The first method is the proposed GBG method with NR=64 and
NC=16, the extra edges are placed using the algorithm in

Fig. 7, and the optimal value of M is selected by a 1-D search.
The second method is EMSS authentication [3] where each
packet is connected to a packet that is randomly selected from
the preceding 64 packets and the signature packet contains the
hash of the first 10 packets. The third method is Augmented
Chain [4] C8,8, where each packet is connected to a previous
packet and another packet that is 8 packets away in the high-
level chain, and 7 packets are iteratively inserted between two
consecutive packets in high-level chain. The fourth method is
the Butterfly graph with NR=128 and NC=8, and the signature
packet contains hashs of all packets in the first column.

Fig. 8 compares the LAF of the four approaches at various
overhead levels for p=0.1. It shows that the proposed GBG
significantly outperforms EMSS when overhead is below 40
bytes per packet (i.e., 2 hashes/packet). However, the gap
decreases when overhead is greater then 40 bytes per packet.

Fig. 9 compares the LAF of the four approaches at various
loss rates ranging from 0.01 to 0.2, where the overhead is fixed
at 40 bytes per packet (i.e., 2 hashes/packet). It shows that the

proposed GBG method outperforms the other three methods at
all loss rates.

Fig. 8 – Comparison of LAF at various overhead (p=0.1)

Fig. 9 – Comparison of LAF at various loss rates (overhead

= 40 bytes per packet)

6. SUMMARY

This paper examined how to improve the Butterfly graph to
provide improved stream authentication. We first examined
how to support an arbitrary overhead budget by performing
edge allocation to maximize the percentage of verified packets.
We also proposed enhancements to support an arbitrary number
of packets and to make the signature packet fit within one
MTU. Based on this analysis, we proposed the Generalized
Butterfly Graph (GBG) framework and described how to design
a graph to maximize verification probability given a total
number of packets, overhead budget, and packet loss rate.
Experimental results demonstrate the performance
improvement of the proposed method over existing methods.

7. REFERENCES
[1] B. Schneier, Applied Cryptography, Wiley, 1996. pp. 429-502
[2] R. Gennaro and P. Rohatgi, “How to sign digital streams,”, in Advances
in Cryptology – CRYPTO’97, pp. 180-197
[3] A. Perrig, R. Canetti, J. Tygar and D. Song, “Efficient authentication
and signing of multicast streams over lossy channels,” in Proc. of IEEE
Symposium on Security and Privacy, 2000, pp. 56-73
[4] P. Golle and N. Modadugu, “Authentication streamed data in the
presence of random packet loss,” ISOC Network and Distributed System
Security Symposium, 2001, p.13-22
[5] Z. Zhang, Q. Sun and W.C. Wong, “A proposal of butterfly-graph based
stream authentication over lossy networks,” in Proc. IEEE International
Conference on Multimedia & Expo, July 2005
[6] C.K. Wong and S. Lam, “Digital Signature for Flows and Multicasts,”
The University of Texas at Austin, Department of Computer Sciences,
Technical Report TR-98-15, July 1998

EdgePlacement(NR, NC, e) {
int L, R, round=0;

while(e > 0) {
 if(NC%2==0)
L = R = NC/2

 else
L = NC/2; R = L + 1;

 for(; L>0 && e>0; L--, R++) {
 for(int i=0; i<NR && e>0; i++) {
 if(round == 0)
 create an edge from Pi,L with butterfly constraint;
 else
 create an edge from Pi,L to the first node in column L-1 with least

incoming edges;
e --;

 } //end for
 if(L == R) continue;
 for(int i=0; i<NR && e>0; i++) {
 if(round == 0)
 create an edge from Pi,R with butterfly constraint;
 else
 create an edge from Pi,R to the first node in column R-1 with least

incoming edges;
e --;

 } //end for
 } //end for
round ++;

 }//end while
} //end EdgePlacement(..)

VI - 124

