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ABSTRACT 

This paper proposes a stream authentication method based on 
the Generalized Butterfly Graph (GBG) framework. Compared 
with the original Butterfly graph, the proposed GBG graph 
supports an arbitrary overhead budget and number of packets. 
Within the GBG framework, the problem of constructing an 
authentication graph is considered as a design problem: Given 
total number of packets, packet loss rate, and overhead budget, 
we show how to design the graph (number of rows and columns 
and edge allocation among nodes) to maximize the expected 
number of verified packets. In addition, we also propose a new 
evaluation metric called Loss-Amplification-Factor (LAF), 
which measures the extent to which the authentication method 
exacerbates the effective packet loss rate. Experimental results 
demonstrate significant performance improvements over 
existing authentication methods like EMSS, Augmented Chain, 
and the original Butterfly. 
 
Index Terms— Stream authentication, media security

1. INTRODUCTION 

Desirable security services for emerging media streaming 
applications include assurance of data integrity, source 
authentication, and non-repudiation. Streaming data usually 
contains a long sequence of packets and each packet has a 
deadline before which it must be received, verified, and 
decoded. In addition, streaming data is often afflicted by, and 
tolerable to, a certain level of loss. Straightforward application 
of cryptographic digital signature [1] does not provide an 
effective or efficient solution for streaming data. One extreme 
case is to generate a single signature for all the packets; while 
this leads to very low overhead, it is not robust against packet 
loss because even one lost packet makes all the other packets 
unverifiable. The other extreme case is to generate and transmit 
a signature for each packet. This approach is resilient to losses, 
but has very high overhead (signature size is usually on the 
order of 100 bytes) and very high complexity (signing and 
verifying operations have high complexity). 

Another common approach of stream authentication 
amortizes a signature among a group of packets connected as a 
directed acyclic graph (DAG). Each node corresponds to a 
packet and an edge from node A to B appends A’s hash to B. 
Note that a hash requires much lower overhead (about 20 bytes) 
and much lower computation than a signature. The graph 

typically has one packet carrying the signature and each node 
has at least one path to the signature packet. At the receiver, 
lost packets are removed from the graph and a packet is 
verifiable if it has at least one path to the signature packet. The 
simple hash chain [2] arranges packets into one row, where 
each packet has an edge to the previous packet and the first 
packet is signed. It has low overhead as each packet has only 
one outgoing edge, however it also has low robustness against 
packet loss as any loss will cut the chain and subsequent 
packets are not verifiable. To increase the robustness, Efficient 
Multi-Chained Stream Signature (EMSS) [3], Augmented 
Chain [4], and Butterfly [5] proposed different ways of adding 
redundant edges to the graph. In [5], we have experimentally 
validated that the Butterfly has very good robustness against 
network loss, due to high fault-tolerance of butterfly graph. 
Specifically, the butterfly architecture maximizes the 
independence of the dependencies for a given packet. However, 
the Butterfly graph has its own limitations: (1) fixed overhead 
due to its fixed topology, e.g., given an arbitrary overhead 
budget it is not clear what is the best way to add/ remove edges; 
(2) total number of packets N equals NR(log2NR+1), where NR is 
the number of rows; (3) the signature packet size grows with N, 
as it contains both the signature and the hashes of all packet in 
the first column. For large N the signature packet may be larger 
than the network MTU and therefore would be fragmented for 
transmission -- increasing its loss probability and negatively 
impacting all of the packets in the graph. 

In this paper, we try to preserve the Butterfly graph’s 
valuable robustness to losses, while extending it to overcome 
the above 3 limitations, and refer to this framework as the 
Generalized Butterfly Graph (GBG). The GBG framework 
supports a wide range of possible authentication graphs, and the 
problem of finding the best authentication graph for a given 
situation corresponds to a graph design problem. The input 
parameters include total number of packets N, packet loss rate 
(p), and overhead budget (RO). In this paper we assume IID 
losses for simplicity. The output parameters include the number 
of rows and columns (NR, NC), edge placement, and number of 
transmissions (M) of the signature packet. The signature packet 
may be transmitted multiple times to reduce the probability of 
loss. RO accounts for the (multiple) transmissions of the 
signature packet and overhead data corresponding to edges in 
the graph. The evaluation metric is verification percentage (or 
verification probability), defined as the percentage of received 
packets which are verified. In addition, we also propose a new 
evaluation metric called the Loss-Amplification-Factor (LAF), 
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defined as the ratio of effective loss rate over packet loss rate. 
The effective loss rate accounts for both lost packets and 
packets which are received but unverifiable, i.e., p+(1-p)(1-V), 
where p is packet loss rate and V is the verification percentage. 
For example, a value of 1.5 means the authentication technique 
causes the effective loss rate to be 50% higher than when no 
authentication is used.  Ideally, the LAF would equal 1, i.e., all 
received packets are verified. The closer the LAF for an 
authentication technique is to 1 the greater its robustness to 
losses. 

The rest of this paper is organized as follows. Section 2 
analyzes the Butterfly graph to find a cost-effective edge 
placement strategy given an overhead budget RO. Section 3 
examines how to relax the Butterfly graph to support arbitrary 
number of packets and to confine the signature packet within an 
MTU. Based on this analysis, we propose in Section 4 the 
Generalized Butterfly Graph (GBG) framework and describe 
how to design an authentication graph for a given situation. 
Section 5 evaluates the proposed method against existing 
methods and Section 6 concludes the paper. 

2. ANALYSIS OF BUTTERFLY: EDGE PLACEMENT 

The butterfly graph has a fixed topology and therefore fixed 
overhead. This section studies the problem of how to place the 
edges in the graph given an arbitrary overhead budget RO.  To 
gain more insight into this problem, we implemented two 
greedy algorithms to progressively add edges (one at a time) to 
the authentication graph, starting from the initial state depicted 
in Fig. 1. Initially, the packets are arranged into the same 
matrix as in the Butterfly, however each packet is connected to 
only one packet in the previous column. Then, at every step, the 
greedy algorithm computes the overall verification percentage 
for all possible new edges and adds the edge that provides the 
largest gain. When there are multiple candidate edges with the 
same gain, then one of the candidate edges is picked randomly. 
The first greedy algorithm, referred to as unconstrained greedy, 
allows an edge from one packet to any packet in the previous 
column. The second algorithm, referred to as constrained 
greedy, allows only the edges that appear in original Butterfly. 

 
Fig. 1 – Initial state of greedy algorithms (with 12 packets) 

Fig. 2 compares the LAF of the two greedy algorithms with 
32 packets (NR=8 and NC=4), where 24 extra edges are 
progressively added, starting from the initial state shown in Fig. 
1. One observation is when all 24 edges are added, each packet 
(except packet in the first column) has exactly 2 outgoing edges 
with both unconstrained and constrained greedy algorithms. 
Another observation is a packet’s verification probability is 
maximized if it is directly connected to two packets that are 
independent of each other for verification (i.e., independence 
property). The unconstrained greedy has lower LAF when the 
number of added edge 15, while the constrained greedy has 
slightly lower LAF when >15. When  is small, the 

unconstrained greedy allows more than 2 packets to be 
connected to a packet with higher verification probability, 
without violating the independence property. When  is large, it 
is no longer possible for the unconstrained greedy to find edges 
that satisfy the independence property, while the constrained 
greedy algorithm can still find such edges. Therefore, the 
butterfly-constraint produces slightly worse performance in the 
middle and slightly better performance at the end. We will 
apply this constraint for edge placement. When the given 
overhead budget is less than 2 edges per packet, the edges are 
placed in the middle column first, and then progressively added 
to the outer columns. 

 
Fig. 2 – LAF of graphs built with unconstrained and 

constrained greedy 
From the above experiment, the butterfly graph provides 

the best performance of all the graphs tested given an allocation 
of 2 outgoing edges per node for all nodes except the first 
column. Next, we examine the best edge placement order 
beyond 2 edges per packet. Fig. 3 shows the benefit (increment 
in overall verification percentage) if we place one extra edge 
into different columns of a butterfly graph with 17 columns. It 
is most beneficial to place the extra edge in column-9, followed 
by column-8, 10, 7, 11, 6, 12, 5, 13, 4, 3, 14, 2, 15, 1, and 16. 
Note that the benefits for columns 4 to 13 are almost the same. 

 
Fig. 3 – Increment in verification percentage when 1 edge is 
added to different columns of a butterfly with 17 columns.

3. RELAXING THE BUTTERFLY STRUCTURE 

The goal of this section is to overcome the second and third 
limitations of the Butterfly graph. We examine how to relax the 
Butterfly structure to (a) support an arbitrary number of packets 
N, and (b) to confine the signature packet to within one MTU. 

In the original Butterfly graph, the signature packet grows 
with the total number of packets N, as it contains the digital 
signature and the hashes of all packets in the first column. If the 
signature packet is too big to fit in one MTU, it has to be 
segmented for transmission, which increases its loss probability 
and directly impacts the authentication probability for all of the 
packets. Alternatively, when N is large, we can divide the N 
packets into smaller groups and form a butterfly graph within 
each group. However, this simple approach has high overhead 
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and complexity, since there is one signature packet per group 
and signature packet is costly in terms of computation and 
transmission. Also note that each signature packet needs to be 
transmitted multiple times to avoid loss. We have found that we 
can overcome this problem, without incurring a loss in 
performance, by limiting the number of rows (NR) so that the 
signature packet is confined within one MTU, and the extra 
packets are appended at the end of the graph by adding 
additional columns. Any consecutive log2NR+1 columns taken 
from this relaxed graph constitute a Butterfly graph. Fig. 4 
shows an example with NR=4 and NC=8. Note that any 3 
consecutive columns form a Butterfly graph of 12 packets. 
Therefore, to support an arbitrary number N, we can first 
construct a butterfly graph, and then append extra packets to the 
end of the butterfly graph. 

 
Fig. 4 – Relaxed Butterfly graph with 4 rows and 8 columns 

In the Butterfly graph, all packets within a column have 
the same verification probability, which drops for the first 2 
columns and then becomes flat for all subsequent columns. The 
proposed extension also has this property, as shown in Fig. 5 
which compares the verification probability of packets from 
different columns in a Butterfly (128x8) and a relaxed Butterfly 
graph (64x16). It shows that the extra columns in the relaxed 
butterfly have flat verification probability. 

 
Fig. 5 – Verification percentage of packets in different 

columns of Butterfly and Relaxed butterfly graph (p=0.1) 

4. PROPOSED GENERALIZED BUTTERFLY 
GRAPH 

This section proposes the Generalized Butterfly Graph (GBG) 
framework, and describes how to design an efficient 
authentication graph, based on the prior analysis. 

Given N packets, a generalized butterfly graph is 
constructed as a matrix with NR rows and NC columns, where 
NR=2K and RC NNN . A packet in r-th row and c-th 
column is referred to as Pr,c, where 0 r<NR and 0 c<NC. The 
signature packet Psig contains the signature and hashes of all 
packets in the first column. A packet Pr,c is connected to Pr,c-1 
and is possibly connected to other packets in column c-1. Note 
that the GBG framework covers many possible graphs. For 
instance, when NR=1, the GBG graph is the same as Simple 
Hash Chain; when NR=N, the GBG graph is equivalent to an 

Authentication tree [6] with degree N. In addition, if 
N=NR(log2NR+1), the GBG graph is exactly the same as a 
Butterfly graph. In the proposed GBG framework, we examine 
how to design an efficient authentication graph. The input 
parameters include total number of packets N, overhead budget 
RO, packet loss rate p, and maximum transmission unit (MTU), 
and the output parameters include NR and NC, number of 
transmissions of signature packet M, and graph topology (edge 
placement). The following subsections discuss how to choose 
appropriate values for these output parameters. 

4.1. Number of rows and columns (NR and NC)

The value of NR has two implications: it determines the size of 
the signature packet which contains signature (S bytes) and 
hashes (H bytes per hash) of all packets in the first column; it 
also affects the robustness against network loss. For instance, if 
NR is too big, the signature packet has to be fragmented for 
transmission, which negatively affects the overall verification 
probability. On the other hand, if NR is too small, a burst loss of 
length NR may cut the graph into two halves and the second half 
cannot be verified anymore. Therefore, NR should be chosen to 
be the maximum number satisfying two conditions: NR=2K and 
S+NRH MTU.  

4.2. Number of transmissions of signature packet M

If the signature packet is lost, all the other packets are not 
verifiable, and therefore it has to be transmitted multiple times 
to increase its probability of being delivered. However, every 
transmission leads to additional overhead. For instance, if the 
signature packet is transmitted M times, the overhead budget 
left for the other packets is RO-M(S+NRH) bytes. A small value 
of M leads to high loss probability of the signature packet, 
while a large value of M leads to fewer edges in the graph. A 1-
D search can be performed to find the optimal value for M, e.g., 
Fig. 7 shows the verification percentage with different values of 
M. (Experiment setting: N=1024, RO= 40,960 bytes, S=128, 
H=20, MTU=1500 and p=0.1). 

 
Fig. 6 – Verification percentage for various values of M 

4.3. Edge placement 

Given a NRxNC GBG graph, the initial graph topology (as in 
Fig. 1) and M transmissions of signature packet occupy Rinit = 
M(S+NRH)+(N-NR)H bytes. Therefore, the remaining overhead 
budget is RO-Rinit, corresponding to HRRe initO  extra 
edges which can be placed using the algorithm illustrated in  

 
Fig. 7. The extra edges are placed in round-robin manner, 
starting from packets in the middle column and progressively 
going outwards, as motivated by Fig. 3. 
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Note that the receiver can deduce the graph topology, 
given the values of N, NR and RO. Therefore, these three 
parameters are signaled in a header in the signature packet. The 
overhead of these three parameters is negligible, compared with 
hashes and signatures. 

 
 
 

Fig. 7 – Algorithm to allocate e extra edges in (NRxNC) 
GBG graph 

5. EXPERIMENTAL RESULTS 

To evaluate the performance of the proposed GBG 
authentication graph, we implemented 4 authentication graph 
approaches and measured their performance in the following 
setting: N=1024, p=0.01~0.2, MTU=1500, S=128 and H=20. 
The first method is the proposed GBG method with NR=64 and 
NC=16, the extra edges are placed using the algorithm in  

 
Fig. 7, and the optimal value of M is selected by a 1-D search. 
The second method is EMSS authentication [3] where each 
packet is connected to a packet that is randomly selected from 
the preceding 64 packets and the signature packet contains the 
hash of the first 10 packets. The third method is Augmented 
Chain [4] C8,8, where each packet is connected to a previous 
packet and another packet that is 8 packets away in the high-
level chain, and 7 packets are iteratively inserted between two 
consecutive packets in high-level chain. The fourth method is 
the Butterfly graph with NR=128 and NC=8, and the signature 
packet contains hashs of all packets in the first column. 

Fig. 8 compares the LAF of the four approaches at various 
overhead levels for p=0.1. It shows that the proposed GBG 
significantly outperforms EMSS when overhead is below 40 
bytes per packet (i.e., 2 hashes/packet). However, the gap 
decreases when overhead is greater then 40 bytes per packet. 

Fig. 9 compares the LAF of the four approaches at various 
loss rates ranging from 0.01 to 0.2, where the overhead is fixed 
at 40 bytes per packet (i.e., 2 hashes/packet). It shows that the 

proposed GBG method outperforms the other three methods at 
all loss rates. 

 
Fig. 8 – Comparison of LAF at various overhead (p=0.1) 

 
Fig. 9 – Comparison of LAF at various loss rates (overhead 

= 40 bytes per packet) 

6. SUMMARY 

This paper examined how to improve the Butterfly graph to 
provide improved stream authentication. We first examined 
how to support an arbitrary overhead budget by performing 
edge allocation to maximize the percentage of verified packets. 
We also proposed enhancements to support an arbitrary number 
of packets and to make the signature packet fit within one 
MTU. Based on this analysis, we proposed the Generalized 
Butterfly Graph (GBG) framework and described how to design 
a graph to maximize verification probability given a total 
number of packets, overhead budget, and packet loss rate. 
Experimental results demonstrate the performance 
improvement of the proposed method over existing methods. 
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EdgePlacement(NR, NC, e) { 
int L, R, round=0; 

while(e > 0) { 
   if(NC%2==0)  
L = R = NC/2

   else 
L = NC/2;    R = L + 1; 

   for( ; L>0 && e>0; L--, R++) { 
     for(int i=0; i<NR && e>0; i++) { 
       if(round == 0) 
         create an edge from Pi,L with butterfly constraint; 
       else 
         create an edge from Pi,L to the first node in column L-1 with least  

incoming edges; 
e --; 

     } //end for 
     if(L == R)        continue; 
     for(int i=0; i<NR && e>0; i++) { 
       if(round == 0) 
         create an edge from Pi,R with butterfly constraint; 
       else 
         create an edge from Pi,R to the first node in column R-1 with least  

incoming edges; 
e --; 

     } //end for 
   } //end for 
round ++; 

 }//end while 
} //end EdgePlacement(..) 
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