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ABSTRACT 

In this paper, we propose a method for verifying whether 
two digital images were obtained using the same digital 
camera. The method uses test statistics derived from a two-
channel detector taking as input the noise residuals from 
both images. It is not assumed that the camera that took the 
images is available. 

Index Terms— Forensics, camera identification, sensor, 
fingerprint, authentication

1. INTRODUCTION 

Digital images are increasingly more often produced as 
silent witness in court and become a very crucial piece of 
evidence, e.g., in child pornography, movie piracy cases, or 
insurance claims. Therefore, the question of verifying their 
integrity and origin is rapidly increasing on importance. 

In Source Classification, we wish to assign a given 
image to one of several broad classes, such as scan vs. 
digital camera, or Canon vs. Kodak, etc. Device
Identification focuses on proving that a given image was 
obtained by a specific device that is available (prove that a 
given camera took a certain image or video). Finally, Device
Linking is aiming to group objects according to their 
common source. For example, given a set of images, we 
would like to find out which images were obtained using the 
exact same camera. In a special case, we have two images 
and want to know if they came from the same camera. Note 
that it is not assumed that the camera or any other images 
from it are available. This is the task investigated in this 
paper.

One of the first methods for source classification of 
digital cameras was based on classifying features extracted 
from images [1] or estimated from color filter array (CFA) 
interpolation artifacts [2]. Another method for source 
classification [3] estimates the color interpolation kernel and 
then performs classification using machine learning. We 
note that source classification methods cannot be used for 
device identification or device linking as they only assign 
images to broad classes.  

Device identification or linking require a “fingerprint” 
that is unique to a specific camera, such as defective pixels 
(hot or dead pixels) as originally proposed in [4]. The 

biggest limitation of using defective pixels as sensor 
fingerprint is that some sensors do not exhibit any 
detectable defects or have the defects corrected for. 
Moreover, some defective pixels may not be detectable in 
all images (e.g., a hot pixel with a blue filter in CFA will not 
be convincingly detectable in the sky). Recently, the photo-
response non-uniformity (PRNU) was proposed in [5,6] as a 
sensor fingerprint, an equivalent of biometric for imaging 
sensors. The PRNU is inherent to all semiconductor 
imaging sensors, including CCD and CMOS architectures. 
It is relatively stable in time and can be reliably detected in 
virtually all images even after lossy compression or 
additional processing. The power of this approach is that the 
fingerprint signal is large (as large as the image dimension) 
and can be reliably detected using methods commonly used 
in spread spectrum watermark detection [7]. 

In this paper, we propose a method for device linking 
that uses the PRNU as a unique sensor fingerprint. In 
Section 2, we describe a simplified linearized model of 
imaging sensor output. The model is used in Section 3 to 
derive a detector for device linking. Experimental results are 
in Section 4. The paper is summarized in Section 5. 

2. LINEARIZED SENSOR OUTPUT MODEL 

We accept the following simplified model of the sensor 
output taken from [6,8]. Let I[i, j] be the signal in one color 
channel at pixel [i, j], i = 1, …, m, j = 1, …, n, where m, n
are image dimensions, generated by the sensor before 
demosaicking is applied. Denote by Y[i, j] the incident light 
intensity at the same pixel. Dropping the pixel indices for 
better readability, we have the following model of the 
sensor output 

,             (1) ( ) ngI 1 K Y q

where g is the color channel gain,  is the gamma correction 
factor (typically,  1/2.2), K is a zero-mean multiplicative 
factor responsible for PRNU,  is a noise term that 
includes dark current, shot noise, read-out noise, and  is 
the quantization noise. The gain factor g adjusts the pixel 
intensity level according to the sensitivity of the pixel in the 
red, green, and blue spectral bands to obtain the correct 
white balance. We remind that all operations in (1) are 
element-wise.

n

q
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In our effort to develop a method applicable to a wide 
class of cameras, the model (1) does not incorporate specific 
postprocessing, such as color interpolation (demosaicking) 
or color correction. Since forensic methods based on this 
simplified model have been very successful in the past [6], 
we believe that neglecting the influence of postprocessing is 
justifiable. 

Because the dominant term in the square bracket is the 
light intensity Y, we can factor it out and apply Taylor 
expansion of (1 + x)  = 1 +  x + O(x2) to obtain 

,   (2) (0) (0)I I I K
where (0) (gI Y)  is the sensor output in the absence of 
noise and  is a complex of independent random noise 
components. 

We note that the signal of interest  is weak with 
a SNR typically around –51 dB, depending on the camera. 

(0)I K

3. DEVICE LINKING ALGORITHM 
 
We are studying the following problem: given two images 
I1 and I2, we desire to decide if they were taken with the 
same camera (that is unavailable). In the current version of 
the proposed method, we assume that no geometrical 
transformations besides cropping were applied to them 
(point-wise processing, such as filtering, lossy compression, 
or gamma correction, are allowed). 

First, we perform host signal rejection to improve the 
SNR between  and observed data by subtracting 

from both sides of (2) an estimate 

(0)I K
(0)ˆ ( )FI I  of I(0)

obtained using a denoising filter F
(0) (0) (0) (0)ˆ ˆ ( )W I I IK I I + I I K

 .IK        (3) 
The term  is a combination of  with the additional 
distortion introduced by the denoising filter. Working with 
the noise residual W significantly improves the SNR for our 
signal of interest IK and thus improves the reliability of the 
image linking process. Additionally, we preprocess W using 
the row and column zero-meaning [7] to suppress some 
subtle artifacts due to color interpolation. 

We use a wavelet based denoising filter that removes 
from images Gaussian noise with variance 2

F  (in this 
paper, we used 2

F = 3). See [5] or [9] for more details 
about this filter. 

For the null hypothesis, we include the weak PRNU 
terms coming from different cameras into the noise term and 
arrive at the following hypothesis testing problem: 

H0: ,1W 1 2

W I K 2 2 2W I K

W I K 2 1 2'

2W    (4) 
       H1: , ,1 1 1

where K is an unknown signal. Here, we really should have 
written H0: ,1 1 1 W I K

2

C

, where K  is a 
PRNU from some other camera. However, since the PRNU 

term is a weak signal and PRNUs from different cameras 
are independent, in (4) we included the PRNU terms into 
the noise terms. 

The noise is modeled as a sequence of iid Gaussian 
variables with known variances  and 

. The optimal detector for this two-channel 
model has been derived by Holt [10]. In this paper, we 
present its slightly more general version when an unknown 
circular spatial shift s = (u, v) between the channels may 
exist (one of the images has been cropped). The optimal test 
statistics is a sum of three terms: two energy-like quantities 
and a cross-correlation term: 

2
1 1var( )W

2
2 var( )W

1 2 1 2( , ) max{ ( ) ( ) ( )}T E EI I
s
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Unfortunately, the complexity of evaluating these three 
expressions is proportional to the square of the number of 
pixels because they cannot be evaluated using fast Fourier 
transform as a simple correlation can. For a 4 megapixel 
image, the required computing time on a state-of-the-art PC 
was of the order of days. As using the optimal detector 
would prevent us from running necessary extensive 
experiments, we decided to use a fast suboptimal detector 
instead. The energy terms E1 and E2 vary only little and 
slowly with s. The maximum in (5) is due to the 
contribution of the cross-correlation term that exhibits a 
sharp peak when both images are from the same camera. 
Thus, we selected as an alternative test statistics the 
following NCC (normalized cross-correlation) easily 
calculable using FFT 

,

2 2
, ,

( [ , ] )( [ , ] )
( , )

( [ , ] ) ( [ , ] )
i j

i j i j

i j i u j v
NCC u v

i j i j

X X Y Y

X X Y Y
, (6) 

where
1 1 2 2

2 2 2 2 2 2 2 2
2 1 1 2 2 1 1 2

= , =I W I WX Y
I I I I

with bar denoting the sample mean. 
A pronounced, sharp peak in NCC is indicative of the 

fact that both images were taken with the same camera (see 
Fig. 1a). There exist several different measures of peak 
sharpness [11]. One of them is the ratio between the primary 
peak to the secondary peak (PSR) defined as the largest 
value in the NCC excluding a central region around the 
primary peak. The size of this region is determined by 
observing when the NCC first drops to half of the primary 
peak.

VI - 126



Based on a set of limited experimental comparisons, the 
suboptimal detector produces a peak in the NCC that is as 
sharp as the peak for the optimal statistics (when measured 
using PSR). In Fig. 1a,b, we show the optimal statistics and 
the suboptimal statistics for the range –50 u  50, –50 v

 50 for a pair of two aligned images produced by the same 
camera. Fig. 1c,d shows the same for a pair of images not 
coming from the same camera. 

     (a)                       (b) 

                    (c)                       (d) 

Figure 1: NCC for optimal (a) and suboptimal statistics (b) for a 
matched image pair (the top left and the top middle in Fig. 2, both 
are JPEG images from the same Canon G2 camera); (c) and (d) 
show the same for an unmatched pair (the top left and the top right 
in Fig. 2, one from the Canon G2 camera, and the other from 
Olympus C765-1 camera, both are JPEG images with quality 90).   

In this paper, we use the PSR to evaluate the 
performance of the proposed method. An image pair is 
declared to come from the same camera if PSR Th, where 
Th is a threshold selected to obtain a desired false positive 
rate (falsely identifying an image pair as coming from the 
same camera). From the Central Limit Theorem, the cross-
correlation values for non-matching images are well 
approximated using Gaussian distribution. The cumulative 
density function (cdf) of the PSR for n samples taken from a 
Gaussian distribution with pdf f(x) and cdf F(x) is 

1( ) 1 ( ) ( ) ,  1nc z nz f xz F x dx z .                          (7) 

Thus, setting the threshold to Th will produce the false 
alarm rate of 

PFA = 1 – c(Th).                                                               (8) 
 

4. EXPERIMENTS 

In our experiments, we have used images coming from 8 
cameras from different manufacturers with a variety of 

sensors and resolutions. They included 6 CCD cameras 
Canon G2, Canon S40, Kodak DC290, Olympus C3030, 
Olympus C765 (two cameras of the exact brand), and two 
CMOS cameras – Sigma SD9 with the Foveon sensor and 
Canon XT Rebel.  

Total of 10 images of various indoor and outdoor 
scenes in the raw format were taken with each camera. 
Then, for each camera, we ran the device linking algorithm 
for matching and non-matching image pairs. We tested all 
10 9/2 = 45 matching pairs and 200 randomly chosen pairs 
where the first image was among the 10 images taken by the 
camera and the other image came from the remaining 7 
cameras. For each test, we registered the PSR value. Some 
statistics (range and median) of the PSR values are 
displayed in Table 1. Figure 2 shows a sample of 9 images 
from the tested cameras.

To see how the reliability of the device linking 
algorithm deteriorates with lossy compression, we repeated 
the same experiment after all images were compressed using 
JPEG with quality factor 90 and 75. The results are also 
shown in Table 1. 

Regardless of the quality factor, the largest value of the 
PSR for an unmatched pair (among 3 8 200 pairs) was 1.3, 
while the smallest value for a matched pair (out of 3 8 45
pairs) was 1.0. Setting Th = 1.4 would in our test produce 
zero false alarms (incorrectly classified non-matching pair) 
with the probability of false alarm (8) PFA  5 10–5. In 
Table 1 we report the percentage of correctly classified 
matching pairs with this theoretical false alarm rate. For 
example, 41 correctly classified cases out of 45 pairs of the 
raw Canon Rebel images result in 91.1% probability of 
correct detection of a matched pair (PDM). 

The PDM is usually very high for raw images but 
deteriorates with a decreasing JPEG quality factor. Since the 
PRNU term IK is multiplicative, very dark images are more 
likely to be misclassified. The same is also true for highly 
textured images due to the limitation of the denoising filter, 
which fails to filter out the image content. 

5. SUMMARY 

We present a method that can be used to verify whether two 
digital images were obtained using the same digital camera. 
It is based on detecting a common component (the photo-
response non-uniformity previously proposed as a unique 
fingerprint for digital imaging sensors) in the noise residuals 
of both images. The current version of the method is 
applicable to JPEG compressed or cropped images and is 
expected to perform well for other point-wise processing. 
The method does not need the camera that took the images 
or any other auxiliary images. 
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Matched Pairs Unmatched Pairs Matched Pairs Unmatched Pairs
min  med max min  med max

PDM
min med max min  med max

PDM

Raw 7.4 11.6 24.3 1.00 1.03 1.19 100% Raw 3.6 5.5 9.1 1.00 1.04 1.28 100%
Q90 4.1 6.6 16.5 1.00 1.03 1.20 100% Q90 1.8 3.6 4.8 1.00 1.03 1.25 100%

Canon
G2

Q75 1.2 2.6 6.3 1.00 1.03 1.28 97.8%

Olympus 
C765-1

Q75 1.2 1.8 2.9 1.00 1.03 1.26 88.9%
Raw 8.8 12.6 23.2 1.00 1.03 1.30 100% Raw 1.9 3.0 8.3 1.00 1.03 1.29 100%
Q90 5.3 8.4 14.3 1.00 1.03 1.30 100% Q90 1.1 1.9 4.6 1.00 1.03 1.24 86.7%

Canon
S40

Q75 2.2 3.3 5.2 1.00 1.03 1.30 100%

Olympus 
C765-2

Q75 1.0 1.2 2.7 1.00 1.04 1.26 33.3%
Raw 1.0 2.9 5.7 1.00 1.03 1.21 91.1% SHQ 8.4 15.0 28.1 1.00 1.04 1.26 100%
Q90 1.0 1.7 2.6 1.00 1.03 1.30 57.8% Q90 4.7 8.0 15.1 1.00 1.04 1.25 100%

 Canon 
Rebel

Q75 1.0 1.1 1.6 1.00 1.04 1.27 4.4%

Olympus 
C3030

Q75 1.9 3.7 6.9 1.00 1.03 1.26 100%
Raw 2.2 7.2 13.8 1.00 1.03 1.19 100% Raw 3.8 8.0 14.1 1.00 1.03 1.23 100%
Q90 1.1 2.7 5.4 1.00 1.04 1.24 93.3% Q90 1.4 3.2 6.9 1.00 1.03 1.25 95.6%

Kodak
DC290

Q75 1.0 1.4 2.2 1.00 1.03 1.23 48.9%
Sigma SD9

Q75 1.0 1.5 3.7 1.00 1.04 1.24 55.6%

Table 1: Minimum, median, and maximum PSR and probability of detection (PDM) for tested image pairs from all cameras. The decision 
threshold was set so that the probability of false alarms was PFA  5 10–5.

Figure 2: Some sample images used in our tests. 
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