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ABSTRACT

In this work, we solve the pose estimation problem for robot
motion by placing multiple cameras on the robot. In particu-
lar, we use four cameras arranged as two back-to-back stereo
pairs combined with the Extended Kalman Filter (EKF). The
reason for using multiple cameras is that the pose estimation
problem is more constrained for multiple cameras than for
a single camera. Back-to-back cameras are used since they
provide more information. Stereo information is used in self
initialization and outlier rejection. Different approaches to
solve the long-sequence-drift have been suggested. Both the
simulations and the real experiments show that our approach
is fast, robust, and accurate.

Index Terms— Pose, EKF, multiple-cameras, stereo, drift

1. INTRODUCTION

To find the pose of an object is to get its position and orienta-
tion. It is a popular research problem, and is related to diverse
areas such as: robotics, man-machine interaction, augmented
reality (AR), and intelligent vehicle guiding [18]. Applica-
tions are abundant, for example, maintenance training by aug-
mented reality [11], precise localization in industrial environ-
ments [20], and identifying large 3D objects [14].

In this work, we are interested in getting the ego-motion
of a set of cameras atop a moving robot. As this problem
needs to be solved in real time, we have to use recursive tech-
niques such as the Kalman filter (KF) and the particle filter.
Although the later is more advantageous in tracking contin-
uous curves, such as hand contours, in dense visual clutter,
it requires increasing the sample size and the computational
cost to improve the performance [8]. However, KF and its
variants such as the extended Kalman filter (EKF) are quite
satisfactory in tracking feature corners among frames as in
our case. In fact EKF or its iterated version (IEKF) has been
used in diverse ways in the field of computer vision. For ex-
ample, one filter is used for pose and 3D structure in [4], [17],
[1], and [6]. Using one filter for both pose and structure guar-
antees that they are coupled however the length of the state

∗Supported by the Research Grant Council of HKSAR (Project No.:
4204/04E) and Faculty of Engineering, CUHK (Project Code: 2050350).

space vector becomes large which may affect the filter stabil-
ity [1]. Additionally, a separate filter is used for each 3D point
in [3] and in [19] where another is used for the pose. This in
fact improves speed but may lower the accuracy due to the
decoupling of pose and structure.

Besides using multiple cameras in stereo rigs, they have
been used in pose estimation primarily to resolve the bas-
relief ambiguity [2]. In [5], [7], and [12], the multiple cam-
eras are dealt with as a single generalized camera. Multiple
cameras are used with KF or EKF, for example, in [15] and in
[9] mainly as fixed cameras to estimate the pose of an object
with a known CAD model.

In contrast, we use four cameras forming two stereo-pairs
put back-to-back on a robot moving within the scene. The in-
puts to the system are the simultaneous frames taken by each
camera, and the camera calibration. The output is the real
time pose along a sequence of hundreds of frames. We use
only one EKF for pose estimation. Whenever it is needed,
the 3D structure of the features fed to the filter is calculated
by triangulation based on the filter output which guarantees
the coupling between pose and structure. The main contribu-
tions of our work are: (1) formulating the EKF implementa-
tion for the pose estimation of multiple moving cameras, (2)
using a changeable set of features to avoid the effect of oc-
clusion, and (3) comparing different approaches to solve the
long-sequence-drift and using simple ways to reject the out-
liers. The rest of this paper includes: background, multiple
camera model, proposed algorithm, simulations, real experi-
ments, and is concluded by discussion and conclusions.

2. BACKGROUND

Using multiple cameras rather than a single camera is justified
in [2], [12], and experimentally in [13]. Main reasons are that
pose is much better constrained for multiple cameras, and the
existence of ambiguous scenes. The back-to-back setting is
motivated by the analysis of Fisher Information Matrix [12].
This work is an extension of [13]; the addition of two more
cameras enables the system to use stereo information in self-
initialization and outlier rejection.

To work in the Euclidean space, cameras need calibration.
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Fig. 1: Top-down view: effect of rotation and translation on the displacement of cameras (Camera k represents any of Camera 2, Camera 3,
and Camera 4. Referred to the initial position of Camera 1, the rotation Rk and the translation Dk are fixed.)

Stereo calibration [21] can be used for stereo-pairs, or the fun-
damental matrix, F , can be obtained then the essential matrix,
E, is decomposed to get the extrinsic parameters. In this case,
the baseline between each stereo pair needs to be measured to
resolve a scale factor. To relate the two stereo-pairs, any two
back-to-back cameras can be externally calibrated using two
parallel check-boards [13] or the 1-D calibration method [10].

3. MULTIPLE CAMERA MODEL

For the reference camera (camera 1), the camera coordinates,
a (3 × 1) vector Pij , of the 3D feature Mi(3 × 1) vector, at
frame j is given by:

Pij = RT
j (Mi − dj) (1)

Where Rj is the (3×3) camera rotation matrix at frame j (re-
ferred to the first frame), and dj is the (3 × 1) camera trans-
lation vector at frame j (referred to the first frame). Any other
camera, the kth camera, which is rotated Rk, and translated
Dk from the reference at the first frame has the following jth

frame camera coordinates of Mi:

Pijk = RT
k RT

j (Mi − dj −RjDk) (2)

In Fig.1, Rk, and Dk are shown for the kth camera, while R1

and D1 are the identity matrix and the zero vector respectively
(belonging to the first camera, reference position).

4. PROPOSED ALGORITHM

The core of this algorithm is the multiple-camera EKF. The
state space vector:

s = [tx ṫx ty ṫy tz ṫz α α̇ β β̇ γ γ̇]T (3)

consists of the six pose parameters (Fig. 2), and their deriva-
tives. The plant equation:

sτ = Asτ−1 + nτ (4)

relates the current state sτ to the previous, and the plant noise
nτ . The measurement equation:

Iτ = h(sτ ) + ητ (5)
relates image features Iτ to the measurement noise ητ and the
state measurement relation:

h = {· · · , fk[· · · ,
Pijk(1)

Pijk(3)
,
Pijk(2)

Pijk(3)
, · · · ], · · · }T (6)

using equations: (1), and (2) above and the focal lengthes fk.
These equations affect also the Jacobian calculation, ∂h/∂s,
in the EKF update step. More details can be found in [13].

Although the robot carrying the cameras is moving, they
remain rigidly fixed to each other. Therefore, F is constant
for each stereo-pair throughout the motion (assuming fixed
intrinsic parameters). This fact is used to reject outliers. Ini-
tially features are matched between a stereo-pair and tracked
from frame to frame of the same camera provided that they
verify F of the stereo-pair (within 1.5 pixels of epipolar lines).
The main steps of the algorithm are:

1. Find feature matches between each stereo-pair in the
first frame then, triangulate them to get their 3D struc-
ture (with the first camera at the coordinates origin).

2. Track features to the second frame for each camera re-
spectively. Knowing their 3D structure, get the pose of
the first camera using Lowe’s method ([16] with mod-
ifications of the Jacobian). Since we are close to the
motion start, a few iterations (< 10) are enough. The
aim of this step is to obtain the pose derivatives between
the first two frames so as to start the EKF as accurately
as possible (time required to set in work is minimized).

3. Track features to the next frame of each camera then,
feed the measurements of a number of them (35-50
around the image center to verify the zero-average mea-
surements [13]), their 3D structure, and the previous

VI - 138



state space vector and covariance to the multiple cam-
era EKF. The output is the current state vector (required
pose and derivatives), and the current state covariance.

4. Repeat step (3) to the end of the sequence. Each time
use the output of the filter at the previous frame as input
in the current frame together with the tracked features.

5. If the number of tracked features for any stereo pair
drops below a certain threshold (35), return to the pre-
vious frame, go to step (1), and bypass step (2) since
the state space vector of the previous frame was ob-
tained from the filter. This step may introduce some
drift (discussed below with suggested solutions).

5. SIMULATIONS

The set of cameras was moved randomly with translations
from ±0.005 to ±0.015 meters and rotation angles ±0.005
to ±0.02 radians in the direction of and around the three axes
inside a sphere centered at the origin with a one meter radius
and 35,000 features disturbed randomly on its surface. Two
stereo-pairs (as shown in Fig. 1) were formed by the four
cameras with baselines ranging from 0.1 to 0.2 meters. All
cameras have a 6 mm focal length and 640× 480 resolution.
Gaussian noise with zero mean and 0.5 pixel standard devi-
ation was added to each image feature. A sequence of 100
frames was taken by each camera. Due to the motion random-
ness, the sequence should be divided into a number of sections
(last step of the proposed algorithm above). For fair compar-
ison, each section contained 10 frames. The results were ac-
curate however we noticed some drift in the real experiments
(section 6). Table 1 shows the average of 100 runs of absolute
error in the six pose parameters for using EKF, IEKF only at
the start of each new section (n.s.), IEKF for all frames, and
EKF with drift compensation (cmp) described below. All ab-
solute errors are given per frame in milli-(meters/radians). To
get them in percentage, they should be compared to the aver-
age sum of absolute translations in one run (1 meter), and the
average sum of absolute rotation angles (1.25 radians).

method Tx Ty Tz α β γ

mm mm mm m rad m rad m rad
EKF .963 .851 1.396 .659 .757 .551
IEKF n.s. .888 .806 1.306 .528 .630 .508
IEKF all .0643 .0752 .256 .0711 .0563 .287
EKF cmp .838 .784 1.131 .641 .658 .576

Table 1: Average absolute error of pose values/frame (simulation)

6. REAL EXPERIMENTS

Four ordinary web cameras (shown in Fig. 1) with resolution
640×480 were used. They were calibrated (section 2 above).
A sequence of 220 frames was taken simultaneously by each
camera. The motion of robots is usually uniform, so in addi-
tion to the four methods compared in Table 1, we were able

to run each sequence as one section using the EKF. The re-
sults obtained, the robot used, and samples of the sequences
are shown in Fig.2. The ground truth was obtained from the
computer controlling the robot motion.

7. DISCUSSION AND CONCLUSIONS

EKF with drift compensation used in the experiments above
is simply calculating the pose of the last frame of a section
twice (last of a section is first of the subsequent). Since they
have to be the same, if there is drift, it will be subtracted from
subsequent frames. Despite its simplicity, in simulation this
method was next in performance to IEKF-for-all-frames with
10 iterations (marginally better results of IEKF-new-section
in rotations suggest multiplying the rotational part of drift as
a rotation matrix instead of subtracting it from the angles).

The matter is different in real experiments; both of the
EKF with drift compensation and EKF-one-section are very
close to the ground truth while the other three methods nearly
coincide and suffer from obvious drift especially in case of
ty . The reason for this is that in real experiments the errors
(mainly in triangulation) are caused by non-Gaussian noise
which emerges from errors in camera calibration and lens dis-
tortion. Drift is noticed in [6] if any of the three reference
features is occluded. Here, we use a flexibly changing set
of features without any drawback of occlusion and the drift
is encountered only when few features remain and starting a
new section is a must which is rare for a uniform motion.

For MATLAB-7.0.4 running on a machine with a 2.8 MHz
Pentium processor, and 1.5 GB RAM, the filter needs 14 ms
on average to process each new frame (all cameras) which
means theoretically it can process 71 frames/s. However, the
bottleneck is in tracking and rejecting outliers (0.4 s), and in
stereo-matching and triangulation (27 s usually once at the
initial frame). Though not used here, 320 × 240 frames are
expected to enhance the speed by nearly an order of magni-
tude. More is expected by using C and code optimization.

An essential difference between our solution and other
uses of EKF [1], [3], [4], [6], [17], and [19] is that we do
not enter the structure into the filter. This makes our filter
faster, more stable (shorter state space vector [1]), and more
flexible (any available features can be used). This is further
justified by the fact that the pose is what we seek here; struc-
ture is calculated by triangulation based on the known pose of
the initial reference frame then on demand if needed based on
the output pose of the filter.

In the light of all this, the proposed algorithm verifies the
accuracy, the stability, the flexibility, and the speed needed for
the real time pose estimation. For future work, this solution
will be compared in details with other approaches which enter
the structure into the EKF.
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Fig. 2: Real experiment: first row (translations), second row (rotations), third row (first frame for each camera), fourth row (last frame for
each camera), and bottom left (side view of the robot used). The curves: IEKF new sec., IEKF all, and many sections nearly coincide.
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