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ABSTRACT

Integral projections have been proposed as an efficient method to
reduce the dimensionality of the search space in motion estimation
(ME) algorithms. A number of papers describe methods extending
direct (correlation based) block matching algorithms with projec-
tions, others derive optical flow methods based on the Radon trans-
form. With a single exception all of the above methods use a single
horizontal and vertical projection to keep the ME algorithm com-
putationally simple. In this work we derive a generalization on the
direct projection methods: a ME method based on backprojections,
and investigate the added value of using multiple projection angles.

Index Terms— Motion Analysis, Radon Transforms

1. INTRODUCTION

Motion estimation is a key technique in modern video transmis-
sion chains and display systems. It has a wide variety of applica-
tions, e.g. segmentation, compression, noise-filtering, deinterlacing,
super-resolution and frame-rate up conversion. This paper focuses
on the real-time use of motion estimation, a domain where for exam-
ple HDTV and mobile devices pose new challenges in speed, quality
and cost.

Direct (correlation based) block matching algorithms (BMA) are
popular in industry due to their relative efficiency and possible paral-
lel implementations. The trade-off between quality and cost is usu-
ally determined by (I) search range / search candidates, (II) matching
criterion / cost function and (III) spatio-temporal smoothness con-
straints.

Projections reduce the dimensionality of the search space and
match criterion; as such they have the potential to improve BMA.
Their use is not new: integral projections for ME were first intro-
duced in [1, 2], computational efficiency and reduced sensitivity to
noise were named advantages of the technique. Since then, a large
number of optimizations and derivative methods have been proposed
aiming mainly at I and/or II [3–6]. More recently, projection and
Radon optical flow based ME methods for global and local use were
introduced in [7, 8].

A common feature in the direct correlation based works [1–6] is
the use of two projections at 0 and 90 degrees as a basis for motion
estimation.

To create projections, we will make use of the Radon transform (Sec-
tion 2). Correlation of projections, using e.g. the sum of absolute
differences (SAD), yields 1-D matchprofiles whereas correlation of

blocks yields 2-D matchprofiles1. In this work we look at the re-
construction of a 2-D matchprofile from multiple 1-D matchprofiles
for which we use an inverse Radon transform method called back-
projection. We first show the approximate equality of the backpro-
jected 1-D matchprofiles and the 2-D matchprofile, and then explore
the use of the former in a block matching algorithm for local ME.
More specifically we look at the performance related to the number
of projections, using multiple projection angles.

The paper is therefore layout as follows: Section 2 introduces
definitions of the forward and inverse Radon transform, these are
required for the formulation of the method in Section 3. Section 4
discusses the results of a local ME implementation and comparison
with phase plane correlation ME. In Section 5 we draw conclusions
based on this work.

2. DEFINITIONS

2.1. Radon Transform

A line l in R
2 can be parametrized as indicated in Figure 1:

p = x cos φ + y sin φ (1)

For any arbitrary function f(x, y) : R
2 → R the Radon trans-

form [9–11] can be expressed as

Rf(p, φ) =

Z
k∈l(p,φ)

f(k)dk (2)

=

∞Z
−∞

f(p cos φ− s sin φ, p sin φ + s cos φ)ds

or the line integral of f over all lines l defined by p and φ, ds repre-
senting an increment along line l. We will use the terms projection
indices and projection angles for p and φ respectively. The Radon
transform can also be expressed as an area integral over dx, dy using
the dirac function δ:

Rf = bf(p, φ) =

ZZ
(x,y)∈R2

f(x, y)δ(p− x cos φ− y sin φ)dxdy

=

ZZ
(x,y)∈R2

f(x, y)δ(p− ξ · x)dxdy (3)

1Shifting a projection / image with one / two degrees of freedom respec-

tively.
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The last notation consists of the inner product of the unit direction
vector ξ = (cos φ, sin φ)T and the coordinate vector x = (x, y)T .

The Radon transform is a linear transform, it further has the fol-
lowing shift property:

Rf(x− a) = bf(p− ξ · a, φ) (4)

A shift in the original domain with a results in a shift of the projec-
tion with the inner product ξ ·a. This property is exploited for motion
estimation: translational motion in an image sequence can be recon-
structed from projections as the motion is projected in the direction
of the projection angles φ. Figure 2 shows an image block with
an arrow depicting translational motion (left) and the corresponding
motion in a number of projections with varying angle φ (right).

2.2. Inverse Radon Transform

In this section a method to approximate the inverse Radon transform
is introduced. We use a summation, or backprojection, type of algo-
rithm [9–11] to derive a 2-D matchprofile. Traditionally these types
of algorithms are used in (tomographic) image reconstruction from
projections. The backprojection operator on a function h : Y → R

is defined as2:

Bh(x, y) =

πZ
0

h(x cos φ + y sin φ, φ)dφ (5)

The backprojection method can be thought of as smearing out the
projections in their respective orthogonal directions. As such, each
point in the image plane is determined by summation of a single
point in all projections, the projection indices p are located along a
sinusoid in the Radon domain. A backprojection example is shown
in Figure 3.

The B-operator is not exactly equal to the inverse of the Radon
transform: distortion occurs when simply backprojecting Radon trans-
formed functions. In [10] the following property of the backpro-
jected image is described:

f̌ = BRf (6)

The true image f(x, y) is related to f̌(x, y) as follows:

f̌(x, y) = f(x, y) ∗ ∗ 1p
x2 + y2

=

ZZ
f(x′, y′)dx′dy′p

(x− x′)2 + (y − y′)2
(7)

2(p, φ) span up the extended cylinder space Y, readers can approximately

envision this as a polar space. We refer to Rowland [9] for exact definitions.

where ∗∗ represents 2-D convolution. Backprojection affects the fre-
quency spectrum in the sense that the contribution of a particular
frequency linearly decreases with the distance from the origin (the
zero frequency). Corrected backprojection methods therefore apply
a high-pass filtering, ideally a ramp in the frequency domain, on the
projections to compensate for this effect. In [11] the filtering opera-
tor C is defined such that BCRf = f . That is,

Ch(p, φ) =

∞Z
−∞

|r|(
∞Z

−∞

h(p̃, φ)e−j2πrp̃dp̃)ej2πrpdp (8)

We define the filtered backprojection operator:

Bf = BC (9)

3. MATCH-PROFILE BACKPROJECTION

In this section we will derive the new correlation measure BfSY and
show its similarity to the standard 2-D correlation measure, i.e., the
sum of absolute differences (SAD) denoted as S2D in Equation 10.
Luminance functions Ln and Ln+1 denote the luminance values in
frame n and n + 1 at pixel positions (x, y) and d = (dx, dy)T

denotes the translational displacement. Note that we simplify to an
infinite continuous image domain, whereas the real implementation
has to be on discrete image blocks of finite size. Thus we let

(S2D[Ln, Ln+1])(dx, dy) =ZZ
(x,y)∈R2

|(Ln(x− dx, y − dy)− Ln+1(x, y)|dxdy (10)

Calculating the SAD on a pair of projections reduces the complexity
by an order of magnitude. Each projection has a single displacement
dp. The projection-SAD then follows:

(SY [Ln, Ln+1])(dp, φ) =Z
t∈R

|RLn(t− dp, φ)−RLn+1(t, φ)|dt (11)

The Radon-SAD which combines individual projection SADs by
means of filtered backprojection is defined: BfSY . The following
demonstrates the application of the shift property (dp = d · ξ =

(dx, dy)T · (cos φ, sin φ)T ). This is done on an unfiltered back-
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Fig. 4. Global match-profiles for 2 video sequences (top/bottom)

with distinct background and foreground motions, showing for a

range of shifts values vx and vy the SAD value. Backprojections

BSY (a, d), filtered Backprojection BfSY (b, e) and standard corre-

lation S2D (c, f). Backprojection examples use 50 projection angles.

projection operator for convenience:

(BSY [Ln, Ln+1])(dx, dy) (12)

=

πZ
0

(SY [Ln, Ln+1])(dp[dx, dy, φ], φ)dφ

=

πZ
0

∞Z
−∞

|RLn(t− dp[dx, dy, φ], φ)−RLn+1(t, φ))|dtdφ

=

πZ
0

∞Z
−∞

|
Z

k∈l(p,φ)

Ln(k − (dx, dy))− Ln+1(k)dk|dtdφ

The non-linear absolute operator prevents us from proving an (ap-
proximate) similarity [BfSY [Ln, Ln+1]](vx, vy)
≈ S2D[Ln, Ln+1](vx, vy). Without the absolute operator we get by
the linearity of the Radon transform, the subtraction of 2 (shifted)
functions:

Bf (Rf −Rg) = BfR(f − g) = f − g (13)

In practice, it turns out very often that BfSY ≈ S2D . Figure 4 dis-
plays example correlation profiles BSY , BfSY and S2D for 2 image
sequences with distinct foreground and background motion, which
yields 2 clear minima in BfSY and S2D . The similarity between
BfSY and S2D can be seen in the position and neighborhood of the
minima.

We note that in a practical implementation the filtering of pro-
jections can have a twofold purpose: (I) providing for a correct im-
plementation of the backprojection algorithm and (II) weighting the
frequencies in the image to correlate. Experimentally we found that,
depending on the filter type, we can enhance the depth of the corre-
lation peaks for certain video material. In our experiments we use a
fixed high-pass filter kernel (-1,-1,0,1,1). In Figure 5 an example of
a match-profile is shown with and without high-pass filtering: back-
projection of multiple match-profiles enhances the ’true’ peaks.
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Fig. 5. Dijana sequence, frame n − 1 (a), frame n (b), unfiltered

horizontal projections for both frames (c), match-profiles using SY

for unfiltered [dashed] and filtered [solid] projections (d).

4. RESULTS

In this section we evaluate a local backprojection ME implementa-
tion with the objective of measuring performance for a varying num-
ber of projections. To this end, we replace the frontend part of a
phase plane correlation ME implementation (PPC), which we use as
our benchmark. Phase plane correlation ME [12] is a 2 step hierar-
chical block matching method used in professional format convert-
ers. It has high sub-pixel accuracy due to normalization of frequen-
cies and an efficient implementation due to the use of FFTs.

PPC can be divided in three parts: (I) For each block a ’corre-
lation surface’ is calculated via the frequency domain. (II) In this
surface a peak-hunting algorithm finds local maxima corresponding
to candidate translational displacements. (III) The candidate motion
vectors from II are evaluated for each sub block by means of block
matching.

Our backprojection method replaces part I, the ’correlation sur-
face’ is now derived by backprojection of matchprofiles.

The method we implemented uses large overlapping square
blocks of size 128px with an overlap of 32px at each side and a sub-
block size of 8px. We further note that interpolation on the phase
plane sequences was implemented using curve fitting, whereas the
interpolation in the Radon method was based on interpolation of pro-
jections.

The performance criterion that we use, modified mean square
error (M2SE), is an extension on MSE which tests the validity of the
motion vectors outside the temporal interval in which the motion is
estimated [13]. This gives a better performance indication for the
’true’ motion. The motion vectors estimated between frame n and
n−1 are used to calculate motion compensated pixels Lmc for frame
n using frames n − 1 and n + 1. Let x = (x, y)T denote the pixel
position, D(x, n) the local motion vector field and W the measuring
window. Lmc and M2SE are then defined:

Lmc(x) =
1

2
(Ln−1(x−D(x, n))− Ln+1(x + D(x, n))) (14)

M2SE(n) =
1

|W |
X
x∈W

(Ln(x)− Lmc(x))2 (15)

Table 1 shows the M2SE values for both subpixel and non sub-
pixel accurate methods on a number of synthetic and non-synthetic

VI - 155



Table 1. 5-Frame average M2SE values for both integer and subpixel accurate phase correlation (pp) and projection methods.

Integer Vector Accuracy Subpixel Vector Accuracy

Sequence pp 2 proj. 4 proj. 8 proj. 16 proj. 32 proj. pp 2 proj. 4 proj. 8 proj. 16 proj. 32 proj.

camp1 45.7 57.29 54.61 50.91 50.35 49.84 44.35 55.32 52.1 48.78 47.37 47.96

camp2 105.42 145.79 133.34 124.08 123.93 122.28 100.17 138.43 123.68 118.72 118.04 119.26

football 93.62 117.45 107.9 107.08 106.9 107.95 83.46 101.97 98.26 95.39 93.92 93.48

girlsea 91.99 128.74 107.85 105.4 108.51 109.04 89.13 123.85 103.42 102.11 101.99 101.74

lord 139.31 170.77 141.64 137.87 137.38 134.85 137.96 166.46 139.95 137.38 136.58 137.01

lord d 0 2.5 3.23 0.34 0.55 0.32 0 1.91 2.83 0.41 0.97 0.73

lord h 0 0.27 1.7 0.57 0.1 0.28 0 0.33 1.77 0.52 0.07 0.05

pan 75.34 94.79 78.05 78.36 77.88 75.75 71.69 91.99 72.21 72.81 73.42 71.52

phantom 51.11 53.91 44.91 35.08 38.34 40.47 49.96 51.88 42.5 33.12 35.94 38.83

pip fb 46.58 71.94 66.22 58.19 54.51 52.79 46.4 76.95 70.71 59.6 53.8 52.48

porsche 36.69 54.04 49.3 55.02 56.62 54.59 34.6 52.17 44.67 47.72 53.34 52.21

porschefence 49.61 67.55 72.99 75.2 75.81 71.39 47.38 64.28 68.25 71.66 69.82 68.06

renata 91.68 139.23 108.08 87.81 85.51 90.63 84.29 134.67 101.2 82.83 79.76 80.39

startrek 26.63 42.98 43.69 40.65 41.39 41.58 24.99 41.23 39.62 34.91 35.53 35.76

zoom 51.46 56.01 56.21 57.33 55.62 55.6 40.29 45.08 43.91 42.95 42.64 42.56

Average 60.34 80.22 71.31 67.59 67.56 67.16 56.98 76.43 67.01 63.26 62.88 62.80

sequences. Synthetic sequences contain horizontal (lord h), diag-
onal (lord d) and affine motion (zoom). Non-synthetic sequences
contain typical film material.

In the comparison we see a steep performance increase related
to the number of projection angles which saturates around 8 angles.
The PPC method outperforms the Radon based method on average
by a small margin (11%), the performance of the latter however
much depends on the sequence content. We note that related to the
performance there are details which cannot be elaborated within the
scope of this paper. Firstly the optimization of the filter used in the
Radon method (Section 3). And secondly an effect inherent to the
nature of matchprofile backprojection; a single projection orthogonal
to the direction of the dominant motion in a block will likely yield
the most accurate estimate. Conseqently, the performance could
decrease when adding projection angles. We hypothesize that this
causes some performance fluctuations in our evaluation. Future re-
search should validate this hypothesis and possibly we can use the
effect to our advantage. Finally, we had to leave out a cost analy-
sis of our proposal. We hope to adress this in future publications to
improve our benchmark.

5. CONCLUSION

In this paper we present a generalization on direct correlation based
projection-methods, which is based on backprojections. We bench-
mark a local hierarchical block matching algorithm with match-pro-
file backprojections against a, similar hierarchical, phase plane cor-
relation method. The results show that enlarging the number of pro-
jection angles increases the performance and brings it close to the
performance of phase plane correlation. This establishes the added
value of using multiple projection angles. Future work could pos-
sibly include extension of this method to global motion and affine
models.
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